
12  S P R I N G 2020  VO L . 45 , N O. 1 www.usenix.org

SYSTEMS

Notary
A Device for Secure Transaction Approval

A N I S H A T H A L Y E , A D A M B E L A Y , M . F R A N S K A A S H O E K , R O B E R T M O R R I S ,
A N D N I C K O L A I Z E L D O V I C H

Hardware wallets, USB keys with a display, buttons, and the ability to run custom code, aim
to provide a secure platform for approving transactions such as bank transfers and crypto-
currency transactions. By moving security-critical approval decisions to the device, hard-
ware wallets remove the need to trust relatively complex and bug-prone computers to achieve
overall application security. Hardware wallets run multiple applications, which need to be
isolated from each other. Existing wallets do this using a traditional operating system design
that relies on hardware protection mechanisms like CPU privilege levels and memory
protection, but, unfortunately, existing wallets suffer from bugs similar to those that plague
traditional computer operating systems.

Notary is a new hardware wallet that aims to avoid many of these bugs by design. Notary
achieves strong isolation using reset-based switching, along with the use of a physically sepa-
rate system-on-a-chip for running untrusted code. Notary has a machine-checked proof of
the hardware’s register-transfer level (RTL) design and software, showing that reset-based
switching leaks no state between applications. We built a hardware/software prototype of
Notary, along with a number of apps that run on the device, and demonstrated that Notary’s
design avoids many bugs that affect past hardware wallets.

The Hardware Wallet Paradigm
Users routinely rely on their computers or smartphones to perform and approve security-
critical operations. These operations include financial operations, such as bank transfers
and cryptocurrency transactions, and non-financial operations, such as system administra-
tion tasks like deleting backups or modifying DNS records. The security of these operations
relies on the security of the application as well as the underlying platform. Unfortunately,
modern computers are inadequate for this purpose because they have complicated software
stacks that are full of bugs; even smartphones, often thought to be more secure than PCs,
have fallen victim to jailbreaks and malware. On these platforms, buggy or malicious appli-
cations might tamper with security-critical operations. Is it possible to achieve security for
sensitive transactional operations even when the PC and smartphone are compromised?

Recently, we have seen an increase in the adoption of two-factor authentication (2FA)
devices such as Universal 2nd Factor (U2F) tokens, devices that usually come in the shape
of a small USB stick and augment the PC to provide additional security for logins. However,
these 2FA devices are a bit of a red herring when we are worried about the security of the
platform itself, because 2FA devices authenticate the login process but not the rest of the
interaction with the application. This helps defend against a certain class of attacks, such

Anish Athalye is a PhD student
in the PDOS group at MIT,
working on systems, secu-
rity, and formal verification.
aathalye@mit.edu

Adam Belay is an Assistant
Professor of Computer Science
at MIT’s Electrical Engineering
and Computer Science (EECS)
department, and a member of

the Computer Science and Artificial Intelligence
Lab. He received a PhD from Stanford for his
work on high performance networking. Recent
projects include Shenango, an operating system
that improves datacenter efficiency, and Shin-
juku, a system that uses fine-grained preemp-
tion to reduce tail latency. His current research
focuses on the intersection of hardware and
software, with an emphasis on improving secu-
rity and performance. abelay@mit.edu

Frans Kaashoek is the Charles
Piper Professor in MIT’s EECS
department and a member of
CSAIL, where he co-leads the
Parallel and Distributed Operat-

ing Systems Group (http://www.pdos.csail
.mit.edu/). Frans is a member of the National
Academy of Engineering and the American
Academy of Arts and Sciences, and the recipi-
ent of the ACM SIGOPS Mark Weiser award
and the 2010 ACM Prize in Computing. He
was a cofounder of Sightpath, Inc. and Mazu
Networks, Inc. His current research focuses on
verification of system software.
kaashoek@ mit.edu

Notary is a new design for a hardware wallet, a type of security token
that is used to protect sensitive transactional operations like crypto
currency transfers. Notary aims to be more secure than past hard-

ware wallets by eliminating classes of bugs by design and by formally proving
the correctness of the key operation used in its implementation. We built a
physical prototype of Notary and showed that it achieves functionality simi-
lar to existing hardware wallets while avoiding many bugs that affect them.

http://www.pdos.csail.mit.edu/
http://www.pdos.csail.mit.edu/
mailto:kaashoek@mit.edu

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  13

Nickolai Zeldovich is a Professor
of EECS at MIT and a member
of the Computer Science and
Artificial Intelligence Lab. He
received his PhD from Stanford

University in 2008. Recent projects by Prof.
Zeldovich and his students and colleagues
include the CryptDB encrypted database, the
STACK tool for finding undefined behavior bugs
in C programs, the FSCQ formally verified file
system, the Algorand cryptocurrency, and the
Vuvuzela private messaging system. His cur-
rent research lies in building practical verified
systems. nickolai@csail.mit.edu

as a stolen password: an attacker would not be able to log in to a victim account without the
second factor. But it does not help when the platform is compromised: malware on a user’s
computer waits until the user logs in to a target service (using their U2F token), and then the
malware uses the valid session to perform malicious actions.

In contrast, hardware wallets can provide security even when the user’s computer is com-
promised. In the hardware wallet paradigm, an application is refactored to separate out
security-critical approval decisions from the rest of the application. An untrusted part of
the application runs on the user’s PC, while a trusted security-critical agent runs on the
hardware wallet and is used for approving transactions. The wallet has a display where it
shows the user a transaction, and it has buttons to allow the user to confirm or deny the
transaction. The approval is required to go through the hardware wallet, and this is gener-
ally enforced by requiring a signature with a private key that’s stored only in the wallet.

Cryptocurrencies already fit this paradigm where the approval decision is cleanly separated
out, and in fact, hardware wallets are already popular with users of cryptocurrencies. For
example, users run Bitcoin wallet software on their PC, where they can view their balance,
view past incoming and outgoing transactions, and set up transfers, but they cannot actually
transfer currency. To send bitcoins, the user crafts a transaction on their PC and sends it
to their hardware wallet, which parses the transaction and displays on its screen a human-
readable description like “send 1.3 BTC to 1M3K...vUQ7.” Only if the user presses a “confirm”
button on the hardware wallet does the device sign the transaction, which enables it to be
processed by the Bitcoin network.

The paradigm of authenticating transactions on a separate, secure device has gained traction
among cryptocurrency users, perhaps due to the high-stakes nature of irreversible transac-
tions. The idea has not yet caught on with more traditional client-server applications like
web apps, but there has been some progress in that direction. For example, the Web Authen-
tication API has an extension for transaction authorization, which allows for displaying a
prompt string on an authenticator device and receiving confirmation from the user [1].

Hardware Wallets Can Have Bugs Too
With hardware wallets, the PC is removed from the trusted computing base: security
depends only on the wallet, which is a big win in terms of security. These devices are much
simpler than PCs, and the belief is that while the PC may have been difficult to make secure,
the simplicity of wallets allows for more secure designs.

Most hardware wallets today are fixed-function, in the sense that they don’t run third-party
code: they have built-in support for some fixed set of agents, for example a particular set
of cryptocurrencies, and users depend on the firmware vendor to add support for specific
applications. This has the obvious downside in terms of usability: when new applications
come out, such as a new cryptocurrency, users have to hope that the device manufacturer
implements support. The developer of the cryptocurrency has no power to add the support
themselves. On the other hand, high-end wallets on the market, such as the Ledger wallet
[2], support downloading and running multiple third-party agent applications on the device.
This is great for usability, but it adds considerable complexity, requiring that the device be
capable of isolating agents from each other, because these third-party agents could be buggy
or malicious.

Current devices achieve this by multiplexing the shared hardware between mutually
untrusting agents with a traditional operating system using hardware protection mecha-
nisms like CPU privilege modes and memory protection. This leads to the potential for
the same kinds of bugs that exist in PC operating systems. And, indeed, existing hardware
wallets have suffered from isolation bugs in memory protection configuration, system call

Robert Morris is a Professor in
MIT’s EECS department and a
member of the Computer Sci-
ence and Artificial Intelligence
Laboratory. He received a PhD

from Harvard University for work on model-
ing and controlling networks with large num-
bers of competing connections. His interests
include operating systems and distributed
systems. rtm@csail.mit.edu

SYSTEMS
Notary: A Device for Secure Transaction Approval

14    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

SYSTEMS
Notary: A Device for Secure Transaction Approval

implementations, and driver code [3, 4]. There is also potential
for hardware-related bugs: any shared hardware state could
potentially be used to infer information about other applications
(this is what is happening in attacks like Spectre, for example).

Notary’s Approach
Notary is a hardware wallet that aims to avoid by design many of
the security issues that affect past wallets. Notary doesn’t rely
on hardware protection mechanisms like CPU privilege modes
or memory protection, and it doesn’t have any system calls or
even an operating system in the traditional sense. Instead,
Notary is built around the idea of achieving isolation by using
a dedicated system-on-a-chip (SoC), with its own CPU and
memory, to run untrusted programs. Notary runs one program
at a time on this chip, and it completely resets this chip (and
all of its internal state) when switching between programs, a
primitive that’s formalized and proven correct in our prototype.
Running untrusted code on the dedicated SoC is orchestrated by
a separate chip that never runs third-party code.

Figure 1 illustrates Notary’s design. The design is structured
around physical separation. Notary consists of two security
domains, each with its own separate system-on-a-chip (SOC),
which includes a CPU, ROM, RAM, and peripherals such as
UART. One domain runs the kernel, and one domain runs third-
party agent code. The Kernel SoC manages persistent storage
and switching between agents; no third-party code ever runs
on the Kernel SoC. The Agent SoC, which has no mutable non-
volatile storage, runs agent applications one-at-a-time directly
on raw hardware (with no OS to protect the hardware). The
Agent SoC has direct access to the user I/O path, the buttons
and display, as well as access to USB to communicate with the
outside world.

In this architecture, after the user chooses an agent to run, it is
launched as follows. First, the Kernel SoC resets the Agent SoC
and clears all of its internal state. Next, the Kernel SoC reads an

agent’s code, keys, and data from persistent storage and sends it
over the UART; on the other side of the UART, the Agent SoC’s
bootloader receives the code/data, saves it in RAM, and executes
it. At this point, the agent runs directly on top of the hardware on
the Agent SoC, not requiring further interaction with the Kernel
SoC. The agent has access to everything it needs: its own code
and data, the user I/O path, and communication to the outside
world. It can do its job, such as displaying a Bitcoin transaction,
receiving confirmation from the user, and sending a signed
transaction out via USB. Finally, when the agent is done, it has
only one way of interacting with the Kernel SoC: a “save and
exit” operation, where the agent requests termination, optionally
supplying a new persistent state. After this, to run a different
agent on the device, the process starts over, beginning with
clearing state in the Agent SoC. Notary’s separation architecture
has analogs for all the operations that hardware wallets gener-
ally support: factory-resetting the device, installing/removing
agents, and launching agents.

In Notary’s design, the decision to connect user I/O and USB
directly to the Agent SoC is important for security. An alter-
native design might connect these to the Kernel SoC, but that
would be undesirable because it would introduce the need to
have communication between the Agent SoC and Kernel SoC
during regular agent operation, adding complexity by requiring
a large number of system calls beyond the single save/exit “sys-
tem call” that Notary supports.

In Notary’s design, it is safe to give untrusted code raw access
to the user I/O and USB peripherals because the state clearing
operation covers peripherals: if a malicious or buggy agent puts
the display or USB controller into a bad state, the reset and state
clearing operation will fix it. Furthermore, having the display
connected to the Agent SoC running potentially untrustworthy
code does not introduce the possibility of confusing the user, due
to Notary’s reset-based workflow. The user switches applica-
tions by restarting the entire device, which makes the kernel
start a special agent, the application launcher, on the Agent SoC.
The user can unambiguously select an agent to run, and after
that point, the chosen agent has exclusive control over user I/O
until the device is restarted.

With this architecture, Notary achieves isolation between two
agents running one after another on the same chip. Running
agent code directly on top of raw hardware, using reset as a
mechanism to switch agents, obviates the need for a traditional
operating system and hardware protection mechanisms, which
can be error-prone to program. Performing state clearing, wip-
ing out all state in the Agent SoC between running different
agents, ensures that one agent’s secrets can’t leak to another.
Essentially, Notary boils isolation between agents down to state
clearing.

Figure 1: Notary’s design physically separates trust domains with an SoC
per domain and a simple interconnect between trust domains (reset wire
and UART). Untrusted programs are run one-at-a-time on the Agent SoC,
which has its state cleared between running agents.

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  15

SYSTEMS
Notary: A Device for Secure Transaction Approval

State Clearing
Clearing all internal state in a SoC turns out to be challenging,
and simple approaches don’t work.

At first, we thought that asserting the reset line of an SoC might
be adequate. It turns out that ISAs don’t guarantee that reset
clears internal state; for example, the RISC-V ISA says that
the program counter is set to an implementation-defined reset
vector, and all other state is undefined [5]. In practice, many
chips implement reset such that it only does the minimal work
necessary to get the chip going again. For example, on our SoC,
asserting the reset line did set the program counter to a well-
known value, but it left much state inside the SoC untouched,
including in registers, some CPU-internal caches, RAM, and
peripherals.

Another approach we considered is power cycling the SoC to
clear its internal state. However, research has shown that state
inside these chips can persist for minutes without power [6].
Notary applies state clearing before every application switch,
so a delay of several minutes to clear state would translate to a
delay of several minutes when launching any application, mak-
ing the device unusable. Furthermore, powering off the SoC
for a few minutes provides no guarantees that state is actually
cleared.

Provably Correct Software-Based State Clearing
Notary’s approach is to use software to clear an SoC’s state. The
idea is that asserting the reset line resets the program counter,
so it can return control to software in boot ROM that can com-
plete the job of clearing all state in the chip, as shown in Figure 2.
The idea of having initialization code run on startup is not new,
but Notary’s boot code is doing something unusual: it’s aiming to
clear every bit of state internal to the SoC, which includes details

that don’t even exist at the ISA level, such as microarchitectural
state. Writing this boot code is a challenge; it’s not immediately
obvious that writing such code will even be possible. We nor-
mally think about code at the abstract machine level, consulting
the ISA specification to understand its behavior, but in Notary’s
case, we need this code to affect internal state.

To help develop this boot code and convince ourselves that it’s
correct, we built a tool that analyzes an SoC’s implementation at
the gate level to determine whether the boot code successfully
clears all internal state in all situations. The tool takes Verilog
code that describes the SoC, converts it to a format compatible
with SMT solvers, and then checks whether boot code running
on the chip satisfies our correctness property by simulating the
circuit symbolically.

Notary’s boot code for its simple RISC-V-based SoC, built on the
PicoRV32 [7], is formally verified to clear all SoC-internal state
correctly using this tool. We are currently working on applying
this technique to more complex SoCs.

Prototype
We built a hardware/software prototype of Notary, along with
a number of agents that run on the device: a Bitcoin agent and a
general-purpose web app approval agent similar to Web Authen-
tication. Figure 3 shows our prototype running the Bitcoin agent
in the process of approving a transaction. In our prototype, the
heavyweight reset-based approach for launching agents takes
about 135 ms, fast enough for interactive use. Of this, 7 ms are
spent running the formally verified state clearing code, with most
of that time used clearing RAM, and the rest spent copying the
agent code/data to the Agent SoC over the relatively slow UART.

Figure 2: A schematic of Notary’s Agent SoC. Carefully written code in
boot ROM clears all internal state in the SoC after reset.

Figure 3: Notary prototype running a Bitcoin wallet agent

16    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

SYSTEMS
Notary: A Device for Secure Transaction Approval

Conclusion
Notary is a case study in designing for security. Notary sim-
plifies software (e.g., using reset-based agent switching) and
wastes resources (e.g., using physical separation) in order to
achieve strong isolation and defense in depth. This separation
and reset-based switching eliminates by design classes of bugs
that affect traditional user/kernel co-resident designs, includ-
ing OS bugs, microarchitectural side-channels, and certain
hardware bugs. Notary can improve the security of applications
where the crucial transaction decision can be succinctly sum-
marized and delegated to a strongly isolated agent running on
Notary.

So far, cryptocurrencies have embraced hardware wallets, with
significant adoption by users. In the future, we hope to see more
applications be refactored to take advantage of the enhanced
security that hardware wallets offer.

The full Notary paper is available at https://pdos.csail.mit.edu​
/papers/notary:sosp19.pdf.

References
[1] W3C, “Web Authentication: An API for Accessing Pub-
lic Key Credentials,” March 2019: https://www.w3.org/TR​
/webauthn.

[2] “Ledger Hardware Wallets”: https://www.ledger.com.

[3] Riscure Team, “Hacking the Ultra-Secure Hardware
Cryptowallet,” August 2018: https://www.riscure.com/blog​
/hacking-ultra-secure-hardware-cryptowallet.

[4] C. Guillemet, “Firmware 1.4: Deep Dive into Three Vulner-
-abilities which Have Been Fixed,” March 2018: https://www​
.ledger.com/2018/03/20/firmware-1-4-deep-dive-security​
-fixes.

[5] A. Waterman and K. Asanovic, “The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture,” June 2019:
https://riscv.org/specifications/privileged-isa.

[6] A. Rahmati, M. Salajegheh, D. E. Holcomb, J. Sorber, W. P.
Burleson, and K. Fu, “TARDIS: Time and Remanence Decay in
SRAM to Implement Secure Protocols on Embedded Devices
without Clocks,” in Proceedings of the 21st USENIX Security
Symposium, 2012, pp. 221–236: https://www.usenix.org/system​
/files/conference/usenixsecurity12/sec12-final71.pdf.

[7] C. Wolf, “PicoRV32—A Size-Optimized RISC-V CPU,”
2019: https://github.com/cliffordwolf/picorv32.

https://pdos.csail.mit.edu/papers/notary:sosp19.pdf
https://pdos.csail.mit.edu/papers/notary:sosp19.pdf
https://www.w3.org/TR/webauthn
https://www.w3.org/TR/webauthn
https://www.ledger.com
https://www.riscure.com/blog/hacking-ultra-secure-hardware-cryptowallet
https://www.riscure.com/blog/hacking-ultra-secure-hardware-cryptowallet
https://www.ledger.com/2018/03/20/firmware-1-4-deep-dive-security-fixes
https://www.ledger.com/2018/03/20/firmware-1-4-deep-dive-security-fixes
https://www.ledger.com/2018/03/20/firmware-1-4-deep-dive-security-fixes
https://riscv.org/specifications/privileged-isa
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final71.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final71.pdf
https://github.com/cliffordwolf/picorv32

