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Notary
A Device for Secure Transaction Approval

A N I S H  A T H A L Y E ,  A D A M  B E L A Y ,  M .  F R A N S  K A A S H O E K ,  R O B E R T  M O R R I S , 
A N D  N I C K O L A I  Z E L D O V I C H

Hardware wallets, USB keys with a display, buttons, and the ability to run custom code, aim 
to provide a secure platform for approving transactions such as bank transfers and crypto-
currency transactions. By moving security-critical approval decisions to the device, hard-
ware wallets remove the need to trust relatively complex and bug-prone computers to achieve 
overall application security. Hardware wallets run multiple applications, which need to be 
isolated from each other. Existing wallets do this using a traditional operating system design 
that relies on hardware protection mechanisms like CPU privilege levels and memory 
protection, but, unfortunately, existing wallets suffer from bugs similar to those that plague 
traditional computer operating systems.

Notary is a new hardware wallet that aims to avoid many of these bugs by design. Notary 
achieves strong isolation using reset-based switching, along with the use of a physically sepa-
rate system-on-a-chip for running untrusted code. Notary has a machine-checked proof of 
the hardware’s register-transfer level (RTL) design and software, showing that reset-based 
switching leaks no state between applications. We built a hardware/software prototype of 
Notary, along with a number of apps that run on the device, and demonstrated that Notary’s 
design avoids many bugs that affect past hardware wallets.

The Hardware Wallet Paradigm
Users routinely rely on their computers or smartphones to perform and approve security-
critical operations. These operations include financial operations, such as bank transfers 
and cryptocurrency transactions, and non-financial operations, such as system administra-
tion tasks like deleting backups or modifying DNS records. The security of these operations 
relies on the security of the application as well as the underlying platform. Unfortunately, 
modern computers are inadequate for this purpose because they have complicated software 
stacks that are full of bugs; even smartphones, often thought to be more secure than PCs, 
have fallen victim to jailbreaks and malware. On these platforms, buggy or malicious appli-
cations might tamper with security-critical operations. Is it possible to achieve security for 
sensitive transactional operations even when the PC and smartphone are compromised?

Recently, we have seen an increase in the adoption of two-factor authentication (2FA) 
devices such as Universal 2nd Factor (U2F) tokens, devices that usually come in the shape 
of a small USB stick and augment the PC to provide additional security for logins. However, 
these 2FA devices are a bit of a red herring when we are worried about the security of the 
platform itself, because 2FA devices authenticate the login process but not the rest of the 
interaction with the application. This helps defend against a certain class of attacks, such 
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Notary is a new design for a hardware wallet, a type of security token 
that is used to protect sensitive transactional operations like crypto
currency transfers. Notary aims to be more secure than past hard-

ware wallets by eliminating classes of bugs by design and by formally proving 
the correctness of the key operation used in its implementation. We built a 
physical prototype of Notary and showed that it achieves functionality simi-
lar to existing hardware wallets while avoiding many bugs that affect them.
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as a stolen password: an attacker would not be able to log in to a victim account without the 
second factor. But it does not help when the platform is compromised: malware on a user’s 
computer waits until the user logs in to a target service (using their U2F token), and then the 
malware uses the valid session to perform malicious actions.

In contrast, hardware wallets can provide security even when the user’s computer is com-
promised. In the hardware wallet paradigm, an application is refactored to separate out 
security-critical approval decisions from the rest of the application. An untrusted part of 
the application runs on the user’s PC, while a trusted security-critical agent runs on the 
hardware wallet and is used for approving transactions. The wallet has a display where it 
shows the user a transaction, and it has buttons to allow the user to confirm or deny the 
transaction. The approval is required to go through the hardware wallet, and this is gener-
ally enforced by requiring a signature with a private key that’s stored only in the wallet.

Cryptocurrencies already fit this paradigm where the approval decision is cleanly separated 
out, and in fact, hardware wallets are already popular with users of cryptocurrencies. For 
example, users run Bitcoin wallet software on their PC, where they can view their balance, 
view past incoming and outgoing transactions, and set up transfers, but they cannot actually 
transfer currency. To send bitcoins, the user crafts a transaction on their PC and sends it 
to their hardware wallet, which parses the transaction and displays on its screen a human-
readable description like “send 1.3 BTC to 1M3K...vUQ7.” Only if the user presses a “confirm” 
button on the hardware wallet does the device sign the transaction, which enables it to be 
processed by the Bitcoin network.

The paradigm of authenticating transactions on a separate, secure device has gained traction 
among cryptocurrency users, perhaps due to the high-stakes nature of irreversible transac-
tions. The idea has not yet caught on with more traditional client-server applications like 
web apps, but there has been some progress in that direction. For example, the Web Authen-
tication API has an extension for transaction authorization, which allows for displaying a 
prompt string on an authenticator device and receiving confirmation from the user [1].

Hardware Wallets Can Have Bugs Too
With hardware wallets, the PC is removed from the trusted computing base: security 
depends only on the wallet, which is a big win in terms of security. These devices are much 
simpler than PCs, and the belief is that while the PC may have been difficult to make secure, 
the simplicity of wallets allows for more secure designs.

Most hardware wallets today are fixed-function, in the sense that they don’t run third-party 
code: they have built-in support for some fixed set of agents, for example a particular set 
of cryptocurrencies, and users depend on the firmware vendor to add support for specific 
applications. This has the obvious downside in terms of usability: when new applications 
come out, such as a new cryptocurrency, users have to hope that the device manufacturer 
implements support. The developer of the cryptocurrency has no power to add the support 
themselves. On the other hand, high-end wallets on the market, such as the Ledger wallet 
[2], support downloading and running multiple third-party agent applications on the device. 
This is great for usability, but it adds considerable complexity, requiring that the device be 
capable of isolating agents from each other, because these third-party agents could be buggy 
or malicious.

Current devices achieve this by multiplexing the shared hardware between mutually 
untrusting agents with a traditional operating system using hardware protection mecha-
nisms like CPU privilege modes and memory protection. This leads to the potential for 
the same kinds of bugs that exist in PC operating systems. And, indeed, existing hardware 
wallets have suffered from isolation bugs in memory protection configuration, system call 
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implementations, and driver code [3, 4]. There is also potential 
for hardware-related bugs: any shared hardware state could 
potentially be used to infer information about other applications 
(this is what is happening in attacks like Spectre, for example).

Notary’s Approach
Notary is a hardware wallet that aims to avoid by design many of 
the security issues that affect past wallets. Notary doesn’t rely 
on hardware protection mechanisms like CPU privilege modes 
or memory protection, and it doesn’t have any system calls or 
even an operating system in the traditional sense. Instead, 
Notary is built around the idea of achieving isolation by using 
a dedicated system-on-a-chip (SoC), with its own CPU and 
memory, to run untrusted programs. Notary runs one program 
at a time on this chip, and it completely resets this chip (and 
all of its internal state) when switching between programs, a 
primitive that’s formalized and proven correct in our prototype. 
Running untrusted code on the dedicated SoC is orchestrated by 
a separate chip that never runs third-party code.

Figure 1 illustrates Notary’s design. The design is structured 
around physical separation. Notary consists of two security 
domains, each with its own separate system-on-a-chip (SOC), 
which includes a CPU, ROM, RAM, and peripherals such as 
UART. One domain runs the kernel, and one domain runs third-
party agent code. The Kernel SoC manages persistent storage 
and switching between agents; no third-party code ever runs 
on the Kernel SoC. The Agent SoC, which has no mutable non-
volatile storage, runs agent applications one-at-a-time directly 
on raw hardware (with no OS to protect the hardware). The 
Agent SoC has direct access to the user I/O path, the buttons 
and display, as well as access to USB to communicate with the 
outside world.

In this architecture, after the user chooses an agent to run, it is 
launched as follows. First, the Kernel SoC resets the Agent SoC 
and clears all of its internal state. Next, the Kernel SoC reads an 

agent’s code, keys, and data from persistent storage and sends it 
over the UART; on the other side of the UART, the Agent SoC’s 
bootloader receives the code/data, saves it in RAM, and executes 
it. At this point, the agent runs directly on top of the hardware on 
the Agent SoC, not requiring further interaction with the Kernel 
SoC. The agent has access to everything it needs: its own code 
and data, the user I/O path, and communication to the outside 
world. It can do its job, such as displaying a Bitcoin transaction, 
receiving confirmation from the user, and sending a signed 
transaction out via USB. Finally, when the agent is done, it has 
only one way of interacting with the Kernel SoC: a “save and 
exit” operation, where the agent requests termination, optionally 
supplying a new persistent state. After this, to run a different 
agent on the device, the process starts over, beginning with 
clearing state in the Agent SoC. Notary’s separation architecture 
has analogs for all the operations that hardware wallets gener-
ally support: factory-resetting the device, installing/removing 
agents, and launching agents.

In Notary’s design, the decision to connect user I/O and USB 
directly to the Agent SoC is important for security. An alter-
native design might connect these to the Kernel SoC, but that 
would be undesirable because it would introduce the need to 
have communication between the Agent SoC and Kernel SoC 
during regular agent operation, adding complexity by requiring  
a large number of system calls beyond the single save/exit “sys-
tem call” that Notary supports.

In Notary’s design, it is safe to give untrusted code raw access 
to the user I/O and USB peripherals because the state clearing 
operation covers peripherals: if a malicious or buggy agent puts 
the display or USB controller into a bad state, the reset and state 
clearing operation will fix it. Furthermore, having the display 
connected to the Agent SoC running potentially untrustworthy 
code does not introduce the possibility of confusing the user, due 
to Notary’s reset-based workflow. The user switches applica-
tions by restarting the entire device, which makes the kernel 
start a special agent, the application launcher, on the Agent SoC. 
The user can unambiguously select an agent to run, and after 
that point, the chosen agent has exclusive control over user I/O 
until the device is restarted.

With this architecture, Notary achieves isolation between two 
agents running one after another on the same chip. Running 
agent code directly on top of raw hardware, using reset as a 
mechanism to switch agents, obviates the need for a traditional 
operating system and hardware protection mechanisms, which 
can be error-prone to program. Performing state clearing, wip-
ing out all state in the Agent SoC between running different 
agents, ensures that one agent’s secrets can’t leak to another. 
Essentially, Notary boils isolation between agents down to state 
clearing.

Figure 1: Notary’s design physically separates trust domains with an SoC 
per domain and a simple interconnect between trust domains (reset wire 
and UART). Untrusted programs are run one-at-a-time on the Agent SoC, 
which has its state cleared between running agents.
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State Clearing
Clearing all internal state in a SoC turns out to be challenging, 
and simple approaches don’t work.

At first, we thought that asserting the reset line of an SoC might 
be adequate. It turns out that ISAs don’t guarantee that reset 
clears internal state; for example, the RISC-V ISA says that 
the program counter is set to an implementation-defined reset 
vector, and all other state is undefined [5]. In practice, many 
chips implement reset such that it only does the minimal work 
necessary to get the chip going again. For example, on our SoC, 
asserting the reset line did set the program counter to a well-
known value, but it left much state inside the SoC untouched, 
including in registers, some CPU-internal caches, RAM, and 
peripherals.

Another approach we considered is power cycling the SoC to 
clear its internal state. However, research has shown that state 
inside these chips can persist for minutes without power [6]. 
Notary applies state clearing before every application switch, 
so a delay of several minutes to clear state would translate to a 
delay of several minutes when launching any application, mak-
ing the device unusable. Furthermore, powering off the SoC 
for a few minutes provides no guarantees that state is actually 
cleared.

Provably Correct Software-Based State Clearing
Notary’s approach is to use software to clear an SoC’s state. The 
idea is that asserting the reset line resets the program counter, 
so it can return control to software in boot ROM that can com-
plete the job of clearing all state in the chip, as shown in Figure 2. 
The idea of having initialization code run on startup is not new, 
but Notary’s boot code is doing something unusual: it’s aiming to 
clear every bit of state internal to the SoC, which includes details 

that don’t even exist at the ISA level, such as microarchitectural 
state. Writing this boot code is a challenge; it’s not immediately 
obvious that writing such code will even be possible. We nor-
mally think about code at the abstract machine level, consulting 
the ISA specification to understand its behavior, but in Notary’s 
case, we need this code to affect internal state.

To help develop this boot code and convince ourselves that it’s 
correct, we built a tool that analyzes an SoC’s implementation at 
the gate level to determine whether the boot code successfully 
clears all internal state in all situations. The tool takes Verilog 
code that describes the SoC, converts it to a format compatible 
with SMT solvers, and then checks whether boot code running 
on the chip satisfies our correctness property by simulating the 
circuit symbolically.

Notary’s boot code for its simple RISC-V-based SoC, built on the 
PicoRV32 [7], is formally verified to clear all SoC-internal state 
correctly using this tool. We are currently working on applying 
this technique to more complex SoCs.

Prototype
We built a hardware/software prototype of Notary, along with 
a number of agents that run on the device: a Bitcoin agent and a 
general-purpose web app approval agent similar to Web Authen-
tication. Figure 3 shows our prototype running the Bitcoin agent 
in the process of approving a transaction. In our prototype, the 
heavyweight reset-based approach for launching agents takes 
about 135 ms, fast enough for interactive use. Of this, 7 ms are 
spent running the formally verified state clearing code, with most 
of that time used clearing RAM, and the rest spent copying the 
agent code/data to the Agent SoC over the relatively slow UART.

Figure 2: A schematic of Notary’s Agent SoC. Carefully written code in 
boot ROM clears all internal state in the SoC after reset.

Figure 3: Notary prototype running a Bitcoin wallet agent
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Conclusion
Notary is a case study in designing for security. Notary sim-
plifies software (e.g., using reset-based agent switching) and 
wastes resources (e.g., using physical separation) in order to 
achieve strong isolation and defense in depth. This separation 
and reset-based switching eliminates by design classes of bugs 
that affect traditional user/kernel co-resident designs, includ-
ing OS bugs, microarchitectural side-channels, and certain 
hardware bugs. Notary can improve the security of applications 
where the crucial transaction decision can be succinctly sum-
marized and delegated to a strongly isolated agent running on 
Notary.

So far, cryptocurrencies have embraced hardware wallets, with 
significant adoption by users. In the future, we hope to see more 
applications be refactored to take advantage of the enhanced 
security that hardware wallets offer.

The full Notary paper is available at https://pdos.csail.mit.edu​
/papers/notary:sosp19.pdf.
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