
Cryptographic treatment of CryptDB’s Adjustable Join

Raluca Ada Popa and Nickolai Zeldovich
MIT CSAIL

March 25, 2012

1 Introduction

In this document, we provide a cryptographic treatment of the adjustable join protocol from CryptDB [5].
We also discuss how our scheme could be used outside of CryptDB because it provides a simple functionality
that may be needed in other settings. Intuitively, it is a pseudorandom permutation where an external party
not knowing the secret key can nonetheless adjust a ciphertext under one key to a ciphertext under a different
key, given an adjustment token from a party that knows the secret key.

We assume the reader is familiar with basic cryptographic and elliptic curve notions (e.g., computa-
tional indistinguishability, elliptic curve groups, pseudorandom permutation ensembles). These notions are
explained in [2], [3] and [4].

1.1 CryptDB’s setting

The problem setup for the join in CryptDB consists of a trusted proxy and an untrusted server as shown in
Figure 1. The server stores many columns each containing many data items. The proxy would like to enable
the server to compute a join between certain pairs of columns; to perform a join between two columns means
to identify all pairs of items, one from each column, which are equal to each other.

Proxy

Server

E(5)
E(8)
E(9)

col. A col. B col. C

!"#$%&'(%)*%

!"#$%&'(%)*% E(2)
E(5)
E(9)

E(9)
E(0)

Figure 1: Problem setup. E denotes encryption.

The practical setting of CryptDB and its security goals place the following constraints on a join solution:

• The proxy should be able to enable the server to join certain columns, but the server should not learn
anything about the items’ values other than the join relations, or about join relations for columns which
the proxy did not wish to join. For example, if the proxy wants to join columns A and B and to join C
and D, the server should learn join relations between A and B, as well as join relations between C and
D, but it should not learn join relations between A and C, A and D, B and C, or B and D. However,
we allow join transitivity. That is, if the proxy wants to join B and E, we allow the server to see join
relations among A and E.

1

• The server should not be able to infer join relations between two columns, A and B, before the proxy
actually asks the server to do so.

• The solution should not require the proxy to know a priori (at the time when the data items are stored
at the server) the columns that will be joined.

• The server should be able to determine join relations between two columns by simply performing
equality checks. This constraint is for performance and deployability: the server can now use the
equality operator and indexes built in database systems to process joins, and CryptDB does not need to
change the internals of database systems.

• The proxy should not perform re-encryption of the data.

2 Preliminaries

2.1 Notation

DPT stands for deterministic polynomial-time algorithm and PPT stands for probabilistic polynomial-time
algorithm.

If D is a distribution, x ← D means that x is a sample from D. If D is a finite set, x ← D denotes
drawing x uniformly at random from the items in D. If A is a PPT, x← A(y) denotes drawing a sample x
from the output distribution generated by running A on input y.

Let negl(k) be a negligible function of k (i.e., smaller than one over any polynomial in k for sufficiently
large k).

We define an enumerable spaceD to be an ordered space of values for which there exists a DPT algorithm
that takes as input a value v ∈ D and returns v + 1, the next value after v in order, if v is not the last value,
and for which there exists an initial value 0, starting from which all elements of D can be enumerated using
the v + 1 algorithm.

2.2 Elliptic curves (EC) and the Decision Diffie-Hellman problem

We first present some intuition in elliptic curves for the unfamiliar reader, but please refer to [3] as a starter
for a formal treatment. An elliptic curve E over a finite field Fq is usually a set of points in two-dimensional
space together with one point “at infinity” that form a group with respect to addition of points. To add two
points, one draws a line between the two points and takes the inverse (intuitively, the reflection) of the point
at the intersection of this line and the elliptic curve, with some special treatment given to the infinity point.
Multiplication of a point P by a scalar u works by performing repeated additions, using a O(log u) algorithm.

In terms of hardness assumptions, multiplication of a point P by a scalar u in some EC groups has similar
hardness properties as exponentiation of a group element in some classical non-EC groups. For example, in
some classical group G, the discrete logarithm is considered hard, meaning that given g ∈ G and h = gu ∈ G,
it is hard to compute u. Similarly, the discrete logarithm is also believed to be hard in some elliptic groups:
given P ∈ E and H = Pu ∈ E, it is hard to compute u. CryptDB’s paper [5] chooses to use the notation
P u instead of Pu to convey intuitively why computing u is hard; in this document, nevertheless, we will use
the conventional notation Pu.

In the algorithms we present, we will follow the convention that variables with capital letters represent
points on an elliptic curve and lowercase letters indicate scalars, whenever applicable.

2

Elliptic-Curve Decisional Diffie-Hellman (ECDDH). The security of our scheme relies on the ECDDH
assumption, which is a standard assumption: NIST put forth a set of elliptic curves in which the ECDDH
assumption can be considered true, and ECDDH has been used in a variety of previous protocols, such as
[4]. Intuitively, the assumption states that, for EP an elliptic curve group of order p, the following two
distributions are computationally indistinguishable:

P0 ← EP , P1 ← EP , u0 ← Zp, u1 ← Zp : (P0, P1, P0u0, P1u1) (1)

P0 ← EP , P1 ← EP , u0 ← Zp : (P0, P1, P0u0, P1u0). (2)

Basically, a polynomial adversary cannot tell if the last term is a random number (as in 1) or it uses the same
scalar (u0) as the third term (as in 2).

We now present the ECDDH assumption formally in a format most useful for our proofs.
Let CurveGen be an algorithm that, on input a security parameter k, outputs an elliptic curve’s parameters:

• q for a finite field Fq,

• elliptic curve coefficients in Fq that define an elliptic curve E over Fq, and

• a curve point P ∈ E of order p, where p is a positive prime integer, and |p| = k.

Let EP denote the cyclic group of points on the elliptic curve E generated by the point P .
The ECDDH assumption is believed to hold for elliptic curves over prime-order finite fields, for some large

prime, which also have large embedding degree. The choice of elliptic curves to use for an implementation
specifies the CurveGen algorithm.

Definition 1 (ECDDH on elliptic curves generated by CurveGen). The ECDDH assumption holds for elliptic
curves generated by CurveGen, if for all polynomial-size family of circuits {Advk}k,

Pr


params = (q, E, p, P)← CurveGen(1k);
P0, P1 ← EP ;
u0, u1 ← Zp; b← {0, 1} :
Advk(params, P0, P1, P0u0, P1ub) = b

 < 1/2 + negl(k).

3 Adjustable join definition

We define what an adjustable join scheme is and then what it means for such a scheme to be secure.

Definition 2 (Adjustable join). An adjustable join scheme is a tuple of algorithms (KeyGen,Enc,Token,Adj)
over an enumerable domain space D = {Dk}k∈N, where k is the security parameter:

• Key generation. The PPT algorithm KeyGen takes a unary representation of the security parameter
and outputs system parameters and a secret key: (params, sk)← KeyGen(1k).

• Encryption. The DPT algorithm Enc takes the system parameters, the secret key, a message m ∈ Dk,
and a column index i ∈ Dk, and outputs a ciphertext C: C = Enc(params, sk,m, i).

• Adjustment token. The DPT algorithm Token takes the system parameters, the secret key, as well as
two columns, i, j ∈ Dk , and outputs a token t: t = Token(params, sk, i, j).

• Adjustment. The DPT algorithm Adj takes the system parameters, a ciphertext C, and a token t and
outputs a new ciphertext C ′: C ′ = Adj(params, C, t).

3

We call our implementation of an adjustable join scheme (presented in Sec. 4) ADJ-JOIN. To avoid
confusion, we mention that our paper [5] refers to JOIN-ADJ as the encryption part of ADJ-JOIN, which we
call Enc here.

Definition 3 (Correctness). An adjustable join scheme is correct, if for all (params, sk) ← KeyGen(1k),
for all m0, m1 ∈ Dk with m0 6= m1, for all columns i, j ∈ Dk, the following properties hold. Let
C l
b = Enc(params, sk,mb, l) for b ∈ {0, 1} and l ∈ {i, j} be the encryption of mb for column l; let

ti→j = Token(params, sk, i, j) be the adjustment token from column i to column j. Then,

1. Adj(params, Ci
0, ti→j) = Cj

0 , and

2. Ci
0 6= Ci

1.

Intuitively, the two conditions ensure that the join relation is computed correctly: Item 1 ensures that all
matches will be included in the join result, and Item 2 that no mismatchings will be included in the result.

3.1 Security of adjustable join

In order to prove that our join scheme is secure, we need to define formally what security properties need to
hold. In order for the security guarantees to be meaningful in the real-world, such a security definition needs
to model the threat model (or a stronger threat model). We need to capture (a superset of) the ways in which
an adversary could interact with our join scheme, and then specify what it should not be able to compute.

Modeling the real-world attacker. Recall that the threat model consists of an attacker who is passively
observing the encrypted data and the join adjustments, but cannot issue queries actively. There are three
aspects to take into consideration:

• The attacker may know the value corresponding to certain encryptions.

• Real data does not come from random distributions; moreover, we do not always know the distribution
from which the data comes, but the adversary may know it in some cases. As such, a conservative
adversary model is to let the adversary choose the data to be encrypted itself.

• The proxy does not choose the columns to be joined at random. Similarly, in a conservative attacker
model, the adversary can choose which columns to be joined.

Considering these aspects, the adversary should not be able to find any new join relation between two
columns from two sets of columns that have not been joined. That is, if the adversary does not know if
two items from two non-joined columns are the same or not, the adversary should not be able to learn this
information, despite having the knowledge described above.

Let us first present the definition intuitively. It has the form of a security game. The challenger picks a
secret key by running the key generation algorithm. Consider two sets of columns S0 and S1, initially empty;
the challenger will eventually challenge the adversary to compute a join relation between these two sets of
columns, for which the challenger never provided join information to the adversary. Before the challenge, the
adversary can populate these sets adaptively as it desires by inserting columns in S0 or S1, items in any of
the columns, or asking for the join token of any two columns that must both be in the same set.

During the challenge, the adversary chooses two values, x0 and x1. The challenger then provides the
encryptions of x0 and x1 for every column in S0 and S1; however, the encryptions of x0 and x1 for columns
in S1 are shuffled randomly, in a way unknown to the adversary (but in the same way for all columns in S1).
The adversary must determine which are the encryptions of x0 in S1, effectively determining a join relation
between S0 and S1.

4

Security game. Consider the following security game between a challenger Ch and an adversary Adv for
security parameter k:

I) The challenger runs KeyGen to obtain (params, sk) and sends params to Adv.

II) (Adaptive queries, first round:) Consider two sets of columns S0 and S1, initially empty, and a column
index I ∈ Dk, initially 0, known to both Adv and Ch. The adversary Adv adaptively queries the
challenger in the following ways:

(a) Adv sends “(‘add column’, bS)” to Ch for bS ∈ {0, 1};
Ch adds I to SbS and increments I .

(b) Adv sends “(‘encrypt item’, m, i)” for some value m ∈ Dk and column i ∈ Dk where i < I;
Ch responds with Enc(params, sk,m, i).

(c) Adv sends “(‘join column’, i, j)” for two columns i, j ∈ Dk both in S0 or both in S1;
Ch responds with Token(params, sk, i, j).

III) Adv chooses values x0 and x1 with the constraint that Adv could not have asked ‘encrypt item’ for x0
or x1 for i ∈ S1 in the previous stage, and sends them to Ch;
Ch responds with {〈i,Enc(params, sk, x0, i), Enc(params, sk, x1, i)〉, for all i ∈ S0}. Ch then flips a
coin b and sends to Adv {〈i,Enc(params, sk, xb, i), Enc(params, sk, x1−b, i)〉, for all i ∈ S1}.

IV) (Adaptive queries, second round:) Adv can now run a second adaptive queries round as in Stage II, the
differences being that (1) for every run of Stage IIa for i ∈ S1, Ch also provides 〈Enc(sk, params, xb, i),
Enc(params, sk, x1−b, i)〉, and (2) Adv cannot ask (‘encrypt item’, x0 or x1, i) for i ∈ S1.

V) Adv outputs a bit b′ representing its guess for b.

We say that the adversary wins if Adv’s queries have inputs in the correct ranges and b = b′.

Definition 4 (Security). An adjustable join scheme, ADJ-JOIN, is secure if, for all polynomial-size family
of circuits, {Advk}k,

Pr[Advk wins the security game of ADJ-JOIN for k] < 1/2 + negl(k),

where the probability is taken over KeyGen’s coin tosses and the choice of b.

4 An adjustable join construction, ADJ-JOIN

We now describe our ADJ-JOIN construction, which is relatively simple. We must specify each algorithm
from Def. 2.

Let {PRPk}k be any family of pseudorandom permutations, with PRPk : Dk → Zp. Note that the
existence of such pseudorandom permutations does not introduce a new assumption because one can construct
pseudorandom permutations from any one-way function [2] including one based on ECDDH.

Algorithm 1 (KeyGen(1k)).
1. Compute params = (q, E, p, P) by running CurveGen(1k).
2. Draw two random secret keys skcol and skmsg to be used to index PRPs out of the PRP family. Let

sk = (skcol, skmsg).
3. Output (params, sk).

5

Algorithm 2 (Enc(params, sk,m ∈ Dk, i ∈ Dk)).
1. Compute cski = PRPskcol(i).
2. Output C = P · cski · PRPskmsg(m) ∈ EP .

Algorithm 3 (Token(params, sk, i ∈ Dk, j ∈ Dk)).
1. Compute cski = PRPskcol(i) and cskj = PRPskcol(j).
2. Compute csk−1i to be the inverse of cski in Zp.
3. Output t = csk−1i cskj ∈ Zp.

Algorithm 4 (Adj(params, C, t ∈ Zp)).
1. Output Ct ∈ EP .

Let us first argue that the construction is correct according to Def. 3.

Claim 1. ADJ-JOIN is a correct adjustable join.

Proof. To prove Property 1:

Adj(params, Ci
0, ti→j) = Ci

0ti→j

= Enc(params, sk,m0, i)Token(params, sk, i, j)

= P · cskiPRPskmsg(m0)csk
−1
i cskj

= P · PRPskmsg(m0)cskj

= Cj
0 ,

as desired. We can also see that Property 2 holds:

Ci
0 = Enc(params, sk,m0, i)

= P · cskiPRPskmsg(m0)

6= P · cskiPRPskmsg(m1) (because PRPskmsg is a permutation)

= Ci
1 .

�

4.1 Implementation

For our ADJ-JOIN implementation, we use domain space Dk = 0 . . . 2k − 1. We use AES to implement
PRP because AES is believed to be a pseudorandom permutation. We use a NIST curve in which ECDDH is
believed to hold.

5 Security proof

Before presenting the proof for our security definition, we prove that the adversary cannot break a simpler
and similar challenge; we will then naturally extend this result to the stronger adversary.

6

5.1 A simpler challenge

Lemma 2 (Simple challenge). If the ECDDH assumption holds for elliptic curves generated by CurveGen,
then, for all polynomial-size family of circuits {Advk}k,

Pr


params = (q, E, p, P)← CurveGen(1k);
U0, U1 ← EP ;
x, y ← ZP ; d0 = x, d1 = y;
b← {0, 1} :
Advk(params, U0, U1, U

′
0 = U0x, U

′′
0 = U0y, U

′
1 = U1db, U

′′
1 = U1d1−b) = b

 < 1/2 + negl(k).

Intuitively, we can see that the adversary’s challenge in this definition is a simplification of the challenge
in our security game in Def. 4 because we can think of the simpler challenge as follows. The adversary
receives an encryption U0 of an item in column 0, and an encryption U1 of the same item in column 1. (This
item can be any random number γ because U0 and U1 are random). Then, the adversary receives encryptions
for some values vx and vy for column 0, U0x and U0y, and encryptions of the same values for column 1, U1x
and U1y; the adversary receives the latter two encryptions in a random order given by a bit b. The adversary
has to guess b, essentially deducing the join relation for vx and vy across columns 0 and 1.

Proof of Lemma 2. The proof proceeds by contradiction. Assuming there is a poly-size family of circuits
{Advk}k that guesses b nonnegligibly, we want to construct a poly-size family of circuits {Bk}k that breaks
ECDDH. For a security parameter k, let Adv = Advk and B = Bk.

B receives as arguments an instance of a ECDDH problem it has to break: params, P0, P1, P ′0 = P0u0
and P ′1 = (P1u0 or P1u1) as in Def. 1. Intuitively, B should feed its inputs in some form to Adv to leverage
its power to break the ECDDH problem instance.

Let α(k) be the probability with which Adv guesses b during the simple challenge, which is 1/2 plus a
non-negligible function. Let β(k) be the probability that Adv guesses b on a different input distribution:

β(k) = Pr


params← (q, E, p, P)← CurveGen(1k);
U0, U1 ← EP ;
x, y, z ← ZP ; d0 = x, d1 = z;
b← {0, 1} :
Advk(params, U0, U1, U0x, U0y, U1db, U1d1−b) = b

 .
Basically, instead of providing U1y, we provide Adv with an independent random point U1z; the question

now is whether Adv can still discover which is U1x (the input that shares the same scalar with U0x). Given
{Advk}k, both α(k) and β(k) have well-defined values.

We consider two cases based on the relative values of β(k) and α(k); in each case, we provide a different
construction of B. These two cases are comprehensive and we will see that B has nonnegligible advantage of
breaking ECDDH in both of them.

Case 1: β(k) < 1/4 + α(k)/2

Algorithm 5 (B(params, P0, P1, P
′
0, P

′
1)).

1. B draws w ← Zp and b∗ ← {0, 1}.
2. Let T0 = P ′1 and T1 = P1w.
3. B provides the following inputs to Adv:(

params, P0, P1, P0w,P
′
0, T1−b∗ , Tb∗

)
.

7

4. Adv provides his guess bAdv for b∗. If bAdv = b∗, output 0 meaning that B believes that P ′1 equals
P1u0, else output 1 meaning that P ′1 is random.

Let’s argue that B has nonnegligible probability of breaking ECDDH:

Pr[B wins] = 1/2(Pr[B wins|P ′1 = P1u0] + Pr[B wins|P ′1 = P1u1])

= 1/2 (α(k) + 1− β(k))
> 1/2 + 1/4(α(k)− 1/2), (by the condition on β(k) from Case 1)

which is nonnegligibly larger than 1/2.

Case 2: β(k) ≥ 1/4 + α(k)/2

Algorithm 6 (B(params, P0, P1, P
′
0, P

′
1)).

1. B draws w, v ← Zp and b∗ ← {0, 1}.
2. Let T0 = P ′1 and T1 = P1v.
3. B provides the following inputs to Adv:(

params, P0, P1, P
′
0, P0w, Tb∗ , T1−b∗

)
.

4. Adv provides his guess bAdv for b∗. If bAdv = b∗, output 0, else output 1.

Let’s argue that B has a nonnegligible probability of breaking ECDDH. First note that Pr[B wins|P ′1 =
P1u1] = 1/2 because B has information theoretically no knowledge about b′ because it receives two random
numbers P1v and P1u1 independent of the other values provided to B.

Pr[B wins] = 1/2(Pr[B wins|P ′1 = P1u0] + Pr[B wins|P ′1 = P1u1])

= 1/2 (β(k) + 1/2)

≥ 1/2 + 1/4(α(k)− 1/2), (by the condition on β(k) from Case 2)

which is nonnegligibly larger than 1/2.
In conclusion, B has nonnegligible advantage at breaking ECDDH, which concludes our proof.

�

5.2 Random oracle weak-security

In this section, we move closer to our proof of security. We prove a weaker security notion, denoted weakly-
secure adjustable join for a random oracle ADJ-JOIN. The random oracle ADJ-JOIN is our ADJ-JOIN
scheme where PRPskmsg and PRPskcol are replaced with two independent random oracles, Ok

msg and Ok
col,

respectively.

Definition 5 (Weak-security). A weakly-secure adjustable join is defined the same as in Def. 4, except that
Adv is not allowed to ask for encryptions of x0 and x1 in Step IIb of the first round of adaptive queries even
for columns in S0.

Theorem 3. If the ECDDH assumption holds, random oracle ADJ-JOIN is a weakly-secure adjustable join.

8

!"#$%&'()*%%&+,&-'
.!()/' (q, E, p, P)

 U0, U1

U0’ , U0’’
012'

3'

(q, E, p, P)

“add column”, bS

“encrypt item”, m, i

Cm
i

“join columns”, i, j

ti!j

Repeated
adaptive
queries

x0, x1

Cx0
i, Cx1

i, for all i in S0, Cx0
i, Cx1

i, in random
order for all i in S1

“add column”, bS

Cm
i

“join columns”, i, j

ti!j

Repeated
adaptive
queries

Cx0
I, Cx1

I, if I in S0, Cxb
I, Cx1-b

I, if I in S1

“encrypt item”, m, i

x, y random:
U0’ = U0x, U0’’ = U0y

.4/'

.44/'

.444/'

.45/'

67'

67'
.5/'

b at random:
b = 0: U1’ = U1x, U1’’ =U1y
b = 1: U1’ = U1y, U1’’ = U1x

U1’ , U1’’

Figure 2: Sketch of the setup and notation for the reduction B.

Proof. We proceed by contradiction. Assume there is a poly-size family of circuits {Advk}k having nonneg-
ligible probability of winning when interacting with the challenger Ch from Def. 5’s security game; let us
construct a polynomial-size family of circuits {Bk}k that can solve the simple challenge (Lemma 2) when
interacting with challenger SCh. By Lemma 2, it follows that one can break the ECDDH assumption.

For a given k, let Adv = Advk and B = Bk. Figure 2 shows a sketch of the notation we will use by
showing the inputs corresponding to an instance of the simple challenge that B receives, the communication
that B must have with Adv, and the bit b′ that B must guess. As we describe B, the figure will also help the
reader keep track of the communication between B and Adv.

B must transform its inputs to feed inputs to Adv so that it can leverage Adv’s power to break the simple
challenge. Here is how B works.

Algorithm 7 (Reduction B(params, P0, P1, P
′
0, P

′
1)).

In the following stages, we will only treat cases in which Adv provides B values and queries that are
within the allowed ranges as defined in the security game; if Adv does otherwise, B simply outputs a
random guess: b′ ← {0, 1}.
Stage (I)

1. B simply forwards params to Adv.
Stage (II)

2. Assume that the first column Adv adds to S0 is column 0 and the first column it adds to S1 is 1; the

9

reduction can straightforwardly be modified otherwise. B maintains I the same way as Ch does, so I
is now 2.

3. B chooses csk0 and csk1 keys as follows:

P · csk0 := U0, and P · csk1 := U1. (3)

This means that, for example, whenever B wants to use P csk0, it will use U0. B cannot compute csk0
and csk1 because computing the discrete log is hard, but csk0 and csk1 are well-defined values; the
insight here is that B will only need P csk0 and not necessarily csk0. Let’s see how B answers each of
Adv’s challenges:

• Adv requests (“add column”, bS) for column I: B generates dbS→I ← Zp and sets:

P · cskI := P · cskbS · dbS→I = UbSdbS→I (4)

For example, if bS = 0 (meaning I should be added to S0), B will use U0d0→I whenever it needs
to use P cskI ; that is, instead of generating a random cskI (as in Alg. 2, Step 1), B generates
a random “delta” d0→I with respect to csk0 and computes d0→Icsk0, which is equivalent. For
completeness, let d0→0 = 1 and d1→1 = 1.

• Adv requests (“encrypt”, m, i): Let bS be the bit indicating if i is in S0 or S1. B returns
UbSdbS→i· Ok

msg(m).

• Adv requests (“join”, i, j), where i and j are both in S0 or both in S1: without loss of generality,
let us consider that i, j ∈ S0. B returns d−10→i · d0→j ∈ Zp.

Stage (III)
4. B receives x0 and x1 from Adv.
5. Let i ∈ S0. B provides C0

x0
= U ′0 and C0

x1
= U ′′0 to Adv. B could have naturally computed C0

x0

to be P csk0Ok
msg(x0) as the Enc procedure does; instead, B uses part of his challenge inputs. The

intuition here is that Ok
msg(x0) returns a random value independent of x0 and U ′0 was also obtained

by multiplying a random value to U0. To generalize for i ∈ S0, B provides Ci
x0

= U ′0d0→i and
Ci
x1

= U ′′0 d0→i. For i ∈ S1, B similarly computes Ci
∗: it sends 〈U ′1d1→i, U

′′
1 d1→i〉 in this order.

Stage (IV)
6. B answers queries from Adv in the same way as at Stage (II), except that it computes encryptions for
x0 and x1 for i ∈ S0 and provides values for CI

x∗ for new columns in S1 using the method in Stage
(III).
Stage (V): Decision

7. B receives Adv’s guess b′ and it simply forwards this bit to SCh.

Now that we presented B, we need to argue that {Bk}k is a poly-size family of circuits and that B breaks
the simple challenge nonnegligibly. Since {Advk}k is a poly-size family of circuits and {Bk}k only does
polynomial additional amount of work, the first property follows.

Let us examine the chance that B will guess b′ correctly. First note that if Adv guesses correctly, then B
guesses correctly as well.

Now let’s argue that the distribution of inputs Adv receives is indistinguishable from the one it receives
when interacting with Ch in the random oracle model; in this case, Adv has nonnegligible advantage of
winning. We proceed stage by stage.

Stage (I): SCh uses the same CurveGen algorithm as Ch, so the distributions are equal.

10

Stage (II): Ch picks cski at random using a random oracle. Since SCh chooses U0 and U1 at random from
EP , based on Eq. 3, the induced csk0 and csk1 will also be uniformly distributed over Zp. Now since all dbS→I

values are chosen at random from Zp, similarly all cskI values will be random in Zp so indistinguishable
from outputs of a random oracle. Because of this, all encryptions returned by B are indistinguishable from
encryptions from Ch.

Regarding the “join” response, we can see that d−10→i · d0→j = csk−1i cskj for i, j ∈ S0 (and similarly for
S1) as desired. Note that B would not have been able to compute this step correctly if Adv were allowed to
ask for a join between S0 and S1, because a value such as d0→id1→j would have been incorrect.

Stage (III): Consider how B computes Ci
x0

for i ∈ S0. If B were to provide P cskiOk
msg(x0) to Adv, this

value would certainly have the right distribution because this is the same value Ch would compute. Instead, B
provides C0

x0
= U ′0. Note that since SCh chose x at random, this makes it indistinguishable from Ok

msg(x0).
The key point here is that Adv has not seen any encryptions of x0 before due to the definition of weakly-secure
adjustable join. The same argument applies to Ci

x0
and Ci

x1
for all i ∈ S0.

Since P csk1 equals U1, the same argument applies to Ci
x0

and Ci
x1

for all i ∈ S1. Here, the ciphertexts
for x0 and x1 are already ordered randomly by the random bit used by SCh.

Stage (IV): By the same argument we presented in Stage (II) and Stage (III), we can see that Adv will
receive inputs with the right distribution.

Therefore, overall, B receives inputs for which it can break random oracle ADJ-JOIN with nonnegligible
probability which means that Adv will also break the simple challenge with nonnegligible probability, which
reaches a contradiction based on Lemma 2. �

5.3 Plain model security

Let us now go back and prove the actual (stronger) security definition, Def. 4.

Theorem 4. If the ECDDH assumption holds and if each PRP invoked in ADJ-JOIN is a random oracle,
ADJ-JOIN is a secure adjustable join.

Proof. The proof of this theorem involves making one modification to the proof of weak-security (Theorem 3).
The same proof would not work because of one issue: in order to argue that, in Stage (III), Adv receives the
right input distribution when receiving encryptions of x0 and x1, we crucially relied on the fact that Adv
has not requested encryptions for x0 or x1 for a column in S0 in Stage (II). The reason is that encryptions
B provides to Adv in Stage (II) may not match those in Stage (III), which Adv can easily detect. But the
original security model allows B to ask for such encryptions.

To ensure that Adv still gets the desired distribution over the inputs, B needs to insert C0
x0

:= U ′0 in Stage
(II) the first time that Adv asks for an encryption of x0. But how can B know that a certain m it receives for
encryption in Stage (II) will be equal to x0 from Stage (III)?

The idea is for B to guess randomly which could these values be; this is possible with nonnegligible
probability because Adv makes at most a polynomial number of such queries.

Since {Advk}k is a poly-size family of circuits, there exists a polynomial α(k) in the security parameter
k that is always larger than the number of queries Adv makes in Stage (II). Consider four cases: Adv asks for
x0 and x1 in Stage (II), Adv asks only for x0 in Stage (II), Adv asks only for x1 in Stage (II), and Adv asks
for neither x0 or x1 in Stage (II). B uses the following prediction algorithm:

• Guess which case will happen, by considering that each case occurs with probability 1/4.

11

• If Adv does not ask for either x0 or x1 in Stage (II) in the case predicted, use the same reduction as in
the proof of Theorem 3. Otherwise, B considers the maximum of queries that Adv may make, α(k). It
then considers a uniform distribution over α(k) queries and samples from the distribution to guess in
which queries will Adv request x0 and/or x1. If B predicts that a certain query asks for encryption x0,
B will computes the encryption using the procedure in Stage (III).

When B reaches Stage (III) in its conversation with Adv and learns x0 and x1 from Adv, B will be able
to check if its prediction was correct. If it was not, B guesses b at random, else forwards Adv’s guess as
before.

WheneverB predicts correctly, B has a nonnegligible probability of guessing b. AlsoB predicts correctly
with a probability on the order of 1/α2(k). Therefore, B still has overall nonnegligible probability of
breaking the simple challenger, as desired.

�

Our final result now follows easily:

Corollary 5 (Final result). If the ECDDH assumption holds, ADJ-JOIN is a secure adjustable join scheme.

Proof. The secret keys skcol and skmsg are chosen at random and never released to the adversary. All the
adversary may ever get to see is a mapping between certain input values and output values of these PRPs (in
fact, the adversary never receives this information in the clear, but for worst-scenario’s sake, we can consider
this). This means that all the adversary has is an oracle to each of these PRPs. By the definition of a PRP
(see [2]), no PPT adversary can distinguish non-negligibly between a random oracle and a PRP oracle, so the
adversary gains only negligible probability at winning the security game on top of the negligible probability
from Theorem 4. �

6 Adjustable pseudorandom permutation

Our ADJ-JOIN construction could be used outside of CryptDB because of the simple functionality it provides.
Intuitively, it is a pseudorandom permutation whose key can be adjusted to a different key by an external
party not knowing the secret key. We prove some general useful properties about our construction that are
likely to be applicable to other settings:

• Our construction induces a PRP family.

• An external party can adjust the key between two PRPs.

• Despite such adjustability, two PRPs are independent. This property is not straightforward because,
since two PRPs could be adjusted to each other, they may have information in common (as is the case
with part of the secret key in our construction). Such information may cause a correlation and may
enable an adversary to distinguish a pair of such functions from a pair of independent random oracles,
even if the adversary could not distinguish any such function individually from a random oracle.

• Even after adjusting one PRP to another, the second scheme remains a secure PRP.

The rest of this section formalizes these aspects.

12

6.1 Construction: ADJ-PRP

Our adjustable PRP scheme is called ADJ-PRP. Despite the great similarity to ADJ-JOIN, we give this
scheme a different name and present its construction because PRPs have a different form than adjustable join
schemes (2).

Algorithm 8 (KeyGen∗(1k)).
1. Compute params = (q, E, p, P) by running CurveGen(1k).
2. Draw a secret key skm to be used to index PRPs out of the PRP family.
3. Output (params, skm).

Algorithm 9 (AdjPRPparams,skm,skc(m ∈ Dk)).
1. Output P · skc · PRPskm(m) ∈ EP .

Algorithm 10 (Token∗(params, sk0, sk1)).
1. Compute sk−10 to be the inverse of sk0 in Zp.
2. Output t = sk−10 sk1 ∈ Zp.

Adj is the same for AdjPRP as for ADJ-JOIN (Alg. 4).

6.2 Proving security

Claim 6 (AdjPRP is a PRP). If PRP is a PRP, the function ensemble {(params, skm) ← KeyGen∗(k) :
skc ← Zp : AdjPRPparams,skm,sk0}k is a pseudorandom permutation ensemble.

Proof. Multiplying elements of EP by P · skc induces a permutation. Therefore, we apply a permutation to
PRP which is a pseudorandom permutation; the result is thus a PRP as well, and the claim follows. �

Claim 7 (Correctness of adjustability.). For all k, for all (params, skm) produced by KeyGen∗(1k), for all
sk0, sk1 ∈ Zp, for all m0, m1 ∈ Dk with m0 6= m1, C l

b = AdjPRPparams,skm,skl
(mb) for l, b ∈ {0, 1} and

t = Token∗(params, sk0, sk1), it holds that Adj(params, Ci
0, t) = Cj

0 , and Ci
0 6= Ci

1.

Proof. The proof is the same as for Claim 1. �

The definition of a PRP requires that the secret key of a PRP be chosen freshly at random to guarantee
indistinguishability from a random oracle. In our case though, in order to use adjustability, only the skc part
of the key can be chosen freshly at random, while skm remains common between two instances. Therefore,
we need to prove that the two functions will not be correlated: that is, no adversary can distinguish between a
pair of such functions and a pair of independent random oracles.

Theorem 8 (Random oracle pair indistinguishability.). Under the ECDDH assumption, for all poly-size
circuits Adv, for all sufficiently large k,

Pr


(params, skm)← KeyGen∗(1k), sk0, sk1 ← Zp;
O0 = (oracle for AdjPRPparams,skm,sk0 , oracle for AdjPRPparams,skm,sk1);

O1 = (random oracle, random oracle);
Adv(params,Ob,O1−b) = b

 < 1

2
+ negl(k).

Proof. Similarly to the proof of Corollary 5, we can assume that each PRP with a different random key in
the construction of AdjPRP can be replaced with a random oracle because of the security properties of PRPs.
Therefore, the oracle for AdjPRPparams,skm,sk0 is indistinguishable from the first random oracle. For the

13

same input x, the answers of the AdjPRPparams,skm,sk0 will be a factor of (sk0 · sk−11 ∈ Zp) of the answers of
the oracle AdjPRPparams,skm,sk1 .

Since t = sk0 · sk−11 ∈ Zp is uniformly distributed in Zp, the adversary basically has to distinguish
between a pair of sets with random points (P0, P1, . . . , ;R0, R1, . . .) and a pair consisting of a set with
random points and the same set multiplied by a random scalar (P0, P1, . . . ;P0t, P1t, . . .). This is the
extended form of ECDDH because it has the same form as ECDDH but instead it has a polynomial number
of terms; the extended ECDDH has been shown reducible to the basic ECDDH, thus ensuring that the Adv
cannot guess nonnegligibly.

�

We now prove that, even though the adversary receives the adjustment token between two instances of
AdjPRP, each instance by itself remains a PRP.

Theorem 9 (ADJ-PRP remains a PRP after adjustment). If PRP is a PRP, for all poly-size circuits Adv, for
all k sufficiently large,

Pr


(params, skm)← KeyGen∗(1k); sk0, sk1 ← Zp;
t = Token∗(params, sk0, sk1);
O0 = (oracle for AdjPRPparams,skm,sk1);

O1 = (random oracle);
Adv(t,Ob,O1−b) = b

 < 1

2
+ negl(k).

Proof. Since sk1 is a uniformly random value in Zp, t = sk−10 sk1 ∈ Zp is also a uniformly random value and
it is information theoretically independent of sk0. Since Adv does not receive sk1, t does not provide any
useful information to Adv. This means that Adv receives the same information from its inputs as in the case
of Claim 6. Therefore, this means that there exists Adv′ such that

Probability Adv guesses right ≤ Pr


(params, skm)← KeyGen∗(1k); sk0 ← Zp;
O0 = (oracle for AdjPRPparams,skm,sk1);

O1 = (random oracle);
Adv′(Ob,O1−b) = b

 ,
because the token t does not provide any useful information. This latter probability is at most 1/2 + negl(k)
because AdjPRP is a PRP by Claim 6. �

References

[1] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Lecture Notes in Computer Science, pages 13–25. Springer-Verlag, 1998.

[2] Oded Goldreich. Foundations of Cryptography, volume Basic Tools. Cambridge University Press, 2001.

[3] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209, 1987.

[4] Tatsuaki Okamoto, Eiichiro Fujisaki, and Hiraku Morita. PSEC: Provably secure elliptic curve encryption
scheme (Submission to p1363a). IEEE P1363a, 1999.

[5] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. CryptDB:
Protecting confidentiality with encrypted query processing. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles, Cascais, Portugal, October 2011. 14 pages.

14

	Introduction
	CryptDB's setting

	Preliminaries
	Notation
	Elliptic curves (EC) and the Decision Diffie-Hellman problem

	Adjustable join definition
	Security of adjustable join

	An adjustable join construction, ADJ-JOIN
	Implementation

	Security proof
	A simpler challenge
	Random oracle weak-security
	Plain model security

	Adjustable pseudorandom permutation
	Construction: ADJ-PRP
	Proving security

