Experiences In Cyber Security Education:
The MIT Lincoln Laboratory Capture-the-Flag Exercise *

Joseph Werther, Michael Zhivich, Tim Leek

MIT Lincoln Laboratory

Nickolai Zeldovich
MIT CSAIL

POC: joseph.werther@ll.mit.edu

ABSTRACT

Many popular and well-established cyber security Capture
the Flag (CTF) exercises are held each year in a variety
of settings, including universities and semi-professional
security conferences. CTF formats also vary greatly, rang-
ing from linear puzzle-like challenges to team-based of-
fensive and defensive free-for-all hacking competitions.
While these events are exciting and important as contests
of skill, they offer limited educational opportunities. In
particular, since participation requires considerable a pri-
ori domain knowledge and practical computer security
expertise, the majority of typical computer science stu-
dents are excluded from taking part in these events. Our
goal in designing and running the MIT/LL CTF was to
make the experience accessible to a wider community by
providing an environment that would not only test and
challenge the computer security skills of the participants,
but also educate and prepare those without an extensive
prior expertise. This paper describes our experience in
designing, organizing, and running an education-focused
CTF, and discusses our teaching methods, game design,
scoring measures, logged data, and lessons learned.

1 INTRODUCTION

In April of 2011, MIT Lincoln Laboratory organized a
CTF competition on MIT campus to promote interest in
and educate students about practical computer security.
The competition was structured around defending and
attacking a web application server. The target system
consisted of a LAMP (Linux, Apache, MySQL, PHP)
software stack and WordPress, a popular blogging plat-
form [1]. In order to familiarize participants with the
target system and to provide an opportunity to implement
substantial solutions, a virtual machine very similar to
one used during the competition was made available to
the participants over a month before the competition took
place. To help participants prepare for the event, we of-
fered evening lectures and labs that discussed defensive
and offensive techniques and tools that might be useful

*This work is sponsored by OUSD under Air Force contract FA8721-
05-C-0002 and by DARPA CRASH program under contract N66001-10-
2-4089. Opinions, interpretations, conclusions, and recommendations
are those of the authors and are not necessarily endorsed by the United
States Government.

during the competition. The competition itself was an
eighteen-hour event held over the weekend of April 2-3,
during which students worked in teams of three to five to
defend their instance of WordPress, while simultaneously
attacking those of other teams. A scoring system pro-
vided numerical measures of instantaneous and cumula-
tive security, including measures of availability, integrity,
confidentiality and offense. Carefully crafted but realistic
vulnerabilities were introduced into WordPress at the start
of the competition via ten plug-ins authored by the Lin-
coln team. Since getting a high availability score required
a team to run these plug-ins, participants were forced
to come to terms with the very real dangers of rapidly
deploying untrusted code. WordPress is famous for its
extensibility, and plug-in architectures are increasingly
common and popular in software engineering. A goal
of the MIT/LL CTF was to explore this novel computer
security issue.

The event was open to all Boston area students, without
pre-requisites or a qualification round, with main motiva-
tion including capturing an actual flag (we made a flag that
the winning team took home), learning about practical
computer security, and taking home a $1,500 first-place
prize. Sixty-eight students registered for the event over
the course of two weeks in a first-come, first-served basis.
Of these, fifty-three actually formed teams, and on the
day of the exercise, forty-five showed up in person at 8:30
am on a weekend to compete in the CTF.

Participants’ response to the MIT/LL CTF was over-
whelmingly positive. After the competition ended, we
distributed a survey to ascertain the educational value of
this CTF. The survey responses indicate that students
learned much about practical computer security both be-
fore the competition (in lectures and labs, self-study, and
group activities), and during the competition itself (where
the time pressures of the competition bring into sharp fo-
cus theoretical computer security lessons). While donning
the “black hat” to hunt for flaws in code and configura-
tions is certainly fun, we assert that it is also a powerful
intellectual tool for challenging assumptions and mind-
sets. We believe that a CTF is a valuable pedagogical
tool that can be exploited to engage students in the study
of complicated modern computer and network systems.
Further, we believe it can be accessible to a much larger

subset of computer science students than a traditional
CTF.

This paper discusses our experiences of designing and
running the MIT/LL CTF. We examine the successes
and failures, related to both our educational goals and
system design, and share our overall conclusions with
respect to future improvements. Section 2 discusses our
pedagogical approach, and Section 3 describes the educa-
tional methods and lectures used for the CTF. Section 4
examines the choices made with respect to selecting the
components and techniques used in designing the game
and evaluating participants’ progress. Section 5 covers
the evaluation metrics used to assess teams during the
competition. Section 6 analyzes data gathered during and
after the event including team scoring trends, reactions
to changes in the importance of metrics during the game,
and survey results from the participants. Section 7 dis-
cusses related CTF exercises and how the MIT/LL CTF
is different. Finally, Section 8 offers lessons learned by
the MIT/LL CTF staff, and how we plan to change the
event in future iterations.

2 PEDAGOGICAL APPROACH

Students learn about computer security in a number of
ways. Reading conference papers, journal articles, and
books, for instance, allows students to acquire valuable
theoretical apparatus and learn what has been tried before.
Designing and implementing defensive systems and of-
fensive tools is also valuable, as it requires the application
of abstract knowledge to build real working solutions.

In addition to these fairly traditional educational av-
enues, we believe that practicing defending and attacking
real computer systems in real time is also of immense
educational value, and that it offers lessons that can’t
effectively be taught in a classroom. A CTF event is a
playground in which students can fail or succeed safely at
computer defense, and where it is permissible to engage
in attack, without fear of consequences or reprisal. We
believe it is crucial for CTF events to include an offensive
component, not only because students find it exhilarating,
but because it also challenges flawed reasoning and as-
sumptions in tools, techniques, and systems, and leads to a
deeper understanding of computer science in general [6].

Despite the significant educational potential of a CTF,
many potential participants (i.e., those with a general com-
puter science background or even a few computer security
classes under their belt) perceive there to be a high barrier
to entry. Unfortunately, they are often right: participating
in and learning from a typical CTF competition requires
significant skills and background knowledge. For par-
ticipants with inadequate skills, it can be frustrating and
bewildering, as their systems are compromised quickly
and repeatedly. They are lucky if they even know what
has happened, let alone why.

We are certainly not the first to consider offensive com-
ponents to be crucial to learning practical computer secu-
rity. O’Connor et al [11] suggest that framing study of
general computer science concepts from a perspective of
an adversary encourages student participation and interest.
Moreover, they argue that framing the problem in terms
of security (e.g., forensics) makes learning about other
topics, such as file system formats, much more exciting.
George Mason University explored the merits of having
students create offensive test cases to exploit the code
they developed as part of class assignments [8]. In doing
so, they found that the offensive mindset led students to
discover vulnerabilities not found through other testing
methods. Bratus [2] also argues for adding components
of adversarial, hacker mindset to the traditional computer
science curriculum due to the low-level knowledge it im-
parts, and its necessity in understanding and effectively
implementing secure systems. In designing our CTF, we
sought to enable a wider range of participants to benefit
from this approach to computer security education.

3 EDUCATIONAL DESIGN

Since our goal was to create not only another CTF ex-
ercise, but also a pedagogic tool for teaching computer
security, we incorporated several educational components,
in the form of lectures and labs, into the MIT/LL CTF. In
total, we offered five classes in the month preceding the
competition.

The first lecture provided an overview of the CTF
game, its mechanics and rules. As part of this description,
we presented the game platform and architecture (Linux,
x86), as well as the intended target — the WordPress con-
tent management system. We also explained and justified
the scoring system, with suitable measures of confiden-
tiality, integrity, availability and offense (see Section 5).
This meeting allowed those who had not taken part in a
CTF exercise before to understand the game better and
ask questions.

In the second class, we presented the basics of web
applications, the WordPress API, and some of the funda-
mental ways in which its design makes computer security
difficult. We did not teach PHP, JavaScript or SQL, even
though WordPress makes use of all three, as these details
could easily be mastered by the general computer sci-
ence student in self-study. The intent was not to educate
students to the point that they might go off and write a
web application; rather, we hoped to orient them in this
(perhaps unfamiliar) terrain, providing an overview of
the target and sketching the security issues for them to
consider on their own.

The third class covered various aspects of Linux server
security, also in lecture form. Topics ranged from high-
level concepts, including the principle of least privilege,
multi-layer defense and attack surface, to low-level dis-

cussions of practical details such as firewalls, application
configuration, package management and setuid bina-
ries. A number of standard tools and packages such
as AppArmor, Tripwire, and fail2ban were also ex-
plained. Additionally, MIT’s volunteer student-run com-
puting group SIPB presented a case study in securing
the web application (scripts.mit.edu) and virtual ma-
chine (xvm.mit.edu) hosting services provided to the
MIT community.

The fourth lecture discussed web application exploita-
tion techniques including SQL Injection, Cross-Site
Scripting, and other server-side and client-side attack
vectors. Each topic was addressed from the aspects of
vulnerability discovery, exploitation, and mitigation. It
was our hope that approaching each issue from all three
angles would help the participants build better tools in the
weeks leading up to the competition.

The final class consisted of a lab in which the par-
ticipants were asked to work through computer security
challenges with the help of the organizers. For this exer-
cise, we used Google Gruyere [7]. This site allowed each
student to stand up a separate instance of the exercises
and practice finding and exploiting the plethora of issues
discussed in the previous lecture. By allowing partici-
pants to build exploits and actually apply the knowledge
they gained through the previous lectures, we hope they
gained perspective on the tools they would build or use
in the coming weeks to prevent similar intrusions from
succeeding on their server.

In addition to the classes, a mailing list and wiki were
set up to provide information and answer questions. After
the release of the competition VM (both before and after
lectures and lab), participants posed a number of ques-
tions about server configuration, tool use, and defensive
and offensive strategies using these resources. We also
held a post mortem session right after the competition
to discuss the vulnerabilities that we introduced into the
plug-ins provided and to give teams an opportunity to
explain their strategies, including how they found and ex-
ploited vulnerabilities. We used this forum also to solicit
feedback about the mechanics and implementation of the
competition itself.

4 EXERCISE DESIGN

This section covers design decisions made while planning
the CTF and its component challenges.

4.1 Target Selection

In order to design a CTF that carried an academic fla-
vor, we realized that challenges based on compiled bina-
ries would require an unacceptably large amount of prior
knowledge and thus contradict our pedagogical goals laid
out in Section 2. As such, we chose a CTF setting that
would naturally allow the participants access to the source

code of the system. An easy way to do this was to focus
on web application security.

Having chosen the game genre, the next decision was
selecting an open source or custom-written web appli-
cation framework. We believed that the game would be
more meaningful to the participants if we used realis-
tic, commercial off-the-shelf (COTS) software during the
CTF, since it would allow them to build reusable exper-
tise for a popular software package that they are likely
to encounter again elsewhere. With this in mind we set
out to select a common web application framework that
would enable our CTF to be educational, well-designed,
and fun to play. After considering several candidates, the
PHP-based Content Management System (CMS) Word-
Press [1] was selected as the CTF’s base architecture.

4.2 Modular Game Design

One of the main requirements in selecting a web applica-
tion framework was modularity. We needed a robust way
to introduce new vulnerabilities that could be exploited
by competition participants that could not be discovered
by simple source code “diff”. A plug-in architecture,
especially one as flexible and extensively used as in Word-
Press, allowed us to create new functionality that featured
carefully crafted but realistic vulnerabilities. At the same
time, this architecture enabled us to provide the partici-
pants with the basic framework (i.e., LAMP server with
WordPress) ahead of the competition without revealing
any details of the plug-ins we were building. Finally, sep-
arating our challenges into different plug-ins enabled easy
division of labor.

Plug-ins are used extensively, particularly in web appli-
cations. We felt that the dynamics of acquiring untrusted
code, examining it for potential flaws, fixing the ones that
can be easily found and providing some kind of sandbox-
ing or code isolation as a fail-safe was a realistic strategy
that system administrators might employ. Formulating a
game around this dynamic enabled participants to practice
several important practical computer security skills, in-
cluding source code auditing, fuzzing or web application
penetration testing to find vulnerabilities, patching code
without removing functionality, and configuring appropri-
ate sandboxing mechanisms.

4.3 Pre-release of Select Game Content

To enable students to create significant solutions we
wanted to release as much of the CTF content ahead of the
competition as possible, without releasing the challenges
themselves. By selecting a modular framework, we were
able to withhold all of the challenges explicitly written
for the CTF while providing a virtual machine to teams
a month ahead of time. Since the distributed VM was
almost identical to the one deployed at the competition,
participating teams were encouraged to build defensive

tools and scripts to lock down their servers, while verify-
ing the base server configuration was secure.

Furthermore, since WordPress has a large set of pub-
licly available plug-ins, many of which have published
security vulnerabilities, we were able to further aug-
ment the pre-released virtual machine with representa-
tive sample plug-ins. Three vulnerable WordPress plug-
ins and corresponding exploit code were gathered from
www.exploit-db.comand installed into the VM’s Word-
Press instance. This provided a proxy for what the teams
would see during the game, thus enabling teams to build
and test defensive measures and sandboxing implementa-
tions before the competition began.

4.4 Simulating the Real World

In addition to supporting the pedagogical goals described
above, we aimed to emulate the dynamic nature of real
world operations. Business pressures require IT infras-
tructure to be nimble and provide new functionality on
short notice. To simulate these requirements during the
CTF, we released one batch of new plug-ins at the begin-
ning of the competition, and another batch near the end
of the first day. Because plug-ins provided independent
functionality, teams could choose to run some of them,
but not others, thus giving them time to review and harden
new plug-ins; however, any delay in enabling plug-ins
corresponded to sacrifices in the availability score.

4.5 Selecting Participants

Given the open nature of the MIT/LL CTF, we did not
require any qualifications of our participants, aside from
being enrolled in an undergraduate or graduate level pro-
gram at a Boston-area university and willingness to spend
the weekend competing in the CTF. We encouraged par-
ticipants to form teams of at least three members, as we
felt that competing with fewer people would put the team
at a significant disadvantage. Our resulting participant
pool was comprised of undergraduates from MIT, North-
eastern University, Boston University, Olin College, Uni-
versity of Massachusetts (Boston), and Wellesley College,
divided into (some multi-institutional) teams of three to
five members.

5 SCORING

In order to evaluate the teams’ performance during the
CTF, we separately assessed each team’s ability to defend
their server (the Defense subscore) and to capture other
team’s flags (the Offense subscore). The defense portion
of the score was itself derived from three measures: confi-
dentiality (C'), integrity (I), and availability (A) that were
combined using weights We, Wi, and Wy.

Score = Wy x Defense + (1 — Wy) x Offense
Defense = Wo x C+Wr x I+ Wy x A

Varying values for Wy, W4, W and W provided much-
needed flexibility for simulating scenarios with different
importance assigned to the corresponding properties. The
rest of this section describes how each of the score com-
ponents was measured.

5.1 Functionality-based Metrics

Each team’s availability score was measured using a grad-
ing engine with a module written for each plug-in, with an
additional module to evaluate WordPress’s basic function-
ality. Scores from each grading module were combined
into a weighted average, according to an assigned impor-
tance of each plug-in. For this competition, all function-
ality was weighted evenly; however, these weights could
be easily adjusted to reflect the difficulty of securing a
plug-in that provides some complicated functionality.

During the competition each team’s website was eval-
uated on 5-10 minute intervals. A team’s overall avail-
ability score was calculated as the mean of all availability
scores to date.

5.2 Flag-based Metrics

Every 15 minutes, flags (128-character alphanumeric
strings) were deposited into the file system and database
on each team’s server. If opposing teams captured these
flags, they could submit them to the scoreboard system.
Flags were assigned a point value corresponding to the
perceived difficulty and level of access needed to acquire
the flag. By providing flags of varying difficulty, we
hoped that teams try to escalate privilege to gain higher
levels of access than those afforded by the more basic
exploits available in the game. Following the insertion of
flags into each system, the scoring bot would wait a ran-
dom period and check whether the flags were unaltered.

The confidentiality, integrity and offense score compo-
nents were derived from the flag dropping and evaluation
system described above. Integrity was calculated as the
fraction of flags that were unaltered after the random sleep
period; if the VM was inaccessible, a score of zero was
reported, as the state of the flags could not be determined.
The instantaneous integrity scores were averaged together
to produce the integrity subscore.

Confidentiality and offense were closely linked por-
tions of each team’s score. Confidentiality was a running
record of the percentage of flag points assigned to a team
that had not yet been submitted by an opposing team for
offensive points. Conversely, offense was calculated as
the raw percentage of flags that a team did not own them-
selves but submitted to the scoreboard for points. Unlike
availability and integrity scores, which were immediately
computed by the grading system, the confidentiality and
offense scores were based on flags submitted by different
teams. Since a flag could be submitted to the scoreboard
by a team any time after that flag entered the CTF ecosys-

tem, it was impossible to instantaneously tell when a
given team’s confidentiality was compromised.

5.3 Situational Awareness

In an effort to provide situational awareness, the score-
board presented two informational screens to each team.
The errors view provided access to availability and flag
rotation errors. Each availability error was tagged with
the corresponding plug-in and a timestamp. Flag rota-
tion errors indicated to the team when a flag could not be
dropped onto their system, and whether it was a database
or a file system flag. With both of these pieces of informa-
tion, teams were adequately able to detect and fix broken
functionality on their system.

The grading view provided each team with a break-
down of their scores in a more granular fashion. The last
ten instantaneous integrity and availability scores were
displayed to each team, enabling them to identify when
their level of service had been adversely affected. Con-
fidentiality was displayed as a number of flag-points not
scored by other teams out of the total number of flag
points assigned to the specific team. Conversely, offense
was displayed as the total number of flag points scored out
of the total number of flag points in the CTF not belonging
to the specified team. We considered offering information
about confidentiality and offense score in a similar fash-
ion to integrity, but realized that data was not meaningful
because of the practice of flag hoarding — i.e. collecting
flags from an opponent’s VM but not submitting them
instantly to conceal the intrusion.

6 DATA ANALYSIS

In our CTF, we collected data from two different sources:
the availability, integrity, confidentiality and offense
scores aggregated during the competition itself, and partic-
ipant surveys distributed after the competition. Through
analysis of the scoreboard information we can gain insight
into the way the scoring function affected and incentivized
certain actions within the game, while survey responses
provide a way to gauge effectiveness of the exercise in
educating, challenging, and enticing participants into the
field of computer security.

6.1 Scoring Data Analysis

The scoring function discussed in Section 5 included ad-
justable weights to enable us to shift the balance of the
gameplay if we deemed the CTF to be too focused on
some aspect of defense or offense. On day one, we set
Wy = % (thus giving even weight to defense and offense
components), and set Wiy 1.0y = % In this configura-
tion, we discovered that the teams shut off the web server
(or turned it on only during scoring runs), thus remov-
ing most obvious pathways an adversary would use to
take over the system. This strategy was cost-effective, as

availability was worth only % of the total score, and the
team’s confidentiality and integrity scores improved with
most paths to attack removed. Furthermore, this strategy
enabled the entire team to focus on offense.

Since this was not the game equilibrium we were look-
ing for, we adjusted the grading weights to shift the bal-
ance of the game back in favor of keeping the web servers
running. On the second day, we announced that new scor-
ing weights were W; = .80 and W4 = .80, thus making
availability worth now a hefty 64% of the total score. New
weights, of course, did not apply retro-actively to scores
obtained on the first day.

Given this change in scoring metric, we would have
expected to see availability rise during the second half of
the competition. We would have also expected resources
from offense-related activities to be diverted to defense;
thus, we expected to see offense scores decrease in the
second half of the competition as well. However, the
results showed a more complicated picture, as we now
discuss.

6.1.1 Availability Scores

Figure 1 (left) shows the instantaneous availability for the
top 5 teams (given the final standings).

The general trends in availability scores for the first day
seem to imply that two strategies were in place. Some
teams (DROPTABLES, Ohack, and Pwnies) seem to have
enabled the web server and plug-ins at the beginning of
competition and thus suffered from exploits throughout
the day. Other teams (CookieMonster and GTFO) dis-
abled the plug-ins at the beginning of the day, thus paying
the cost in decreased availability; however, once they fig-
ured out some way to secure them, the web servers were
turned back on.

On the second day, the picture is quite different.
DROPTABLES and GTFO (1st and 2nd place finalists,
respectively) battle to keep their availability up (presum-
ably while under heavy attack). CookieMonster starts out
with high availability, but drops rather precipitously as
the team’s web server is owned and eventually destroyed
beyond recovery. Pwnies and Ohack struggle against at-
tacks as well, but do manage to get the plug-ins functional
towards the end of the competition. While we are not
seeing a clear trend demonstrating that availability was
higher during the second day of the competition, it is ev-
ident that the teams were trying to get their availability
back up, even if some did not succeed.

6.1.2 Offense Scores

Figure 1 (right) shows the cumulative running average
of the offense score for the two days of the competition
(again, just for the top 5 teams). Because flag hoarding is
allowed by our system, there is no “instantaneous” offense
score — this score necessarily carries the memory of the

Availability scores: day 1 (top), day 2 (bottom)

.
o
o

*+—e Pwnies
=—a CookieMonster

e—e GTFO
20 - 8

S \

P e 4

a 2 . T o8BS

2 eof e e i bt ‘
5 gl . DROPTABLES +—+ Ohack
g

2

@

(%]

=]

Services available (%)

& @ wC gC ¢ ¢ «C ¢ «C «C &< «C
O 0% 00 00 o0 00 oV P 0P b o o
BRCE o 3'-0“‘ D-'-QW ‘;'-QB- 6‘-00- A0 S Q'-QD. 0‘-00- A0
hs h% s S Y S 3 3 S s 1

Offense scores: day 1 (top), day 2 (bottom)

N
G

+— DROPTABLES
e—e Pwnies
=—a CookieMonster

== Ohack
e—e GIFO

N
S

=
=

=
o
R

o w
b
|
|
%

Flag Points Captured (%)

30 :
s
5| M

20
15
10

Flag Points Captured (%)

\]
O O g O O 0 0 0V 0V Y 0

2

Figure 1: Instantaneous availability (left) and offense (right) scores for the top 5 ranked teams on day 1 (top) and day 2 (bottom). The plateaus
between 13:00-14:00 and 17:00-18:00 represent lunch and dinner breaks, respectively. The competition ended at 21:00 on day 1 and 19:00 on day 2.

entire competition. Here, we expected to see a decrease
in offense activity on day two, as teams’ resources are
redirected to defense to ensure highest availability.

On day one, Ohack and Pwnies dominate the offen-
sive landscape (at the expense of their availability scores),
while DROPTABLES, CookieMonster and GTFO spend
less time on offense and thus provide higher availabil-
ity (at least before the dinner break). On day two,
Ohack again dominates all other teams in total number
of flags submitted. The sharp jump for both Ohack and
Pwnies coincides with our announcement that the scoring
weights are changing — therefore, any flags that were be-
ing hoarded are submitted to the scoreboard as soon as
possible. After that, offensive scores decline as the teams
presumably spend more effort on defense, with the excep-
tion of GTFO, whose offense score increases throughout
the day.

Overall, the data supports the notion that teams refo-
cused their efforts from offense to defense due to the
change in scoring metric. The results are somewhat mud-
dled by the fact that the teams figured out several vul-
nerabilities by the time day two started, so maintaining a
higher availability was more difficult.

6.2 Participant Survey Results

We released an Internet-based survey to MIT/LL CTF par-
ticipants two days after the competition. This survey cov-
ered overall CTF impressions and education takeaways,
pre-CTF class evaluation, evaluation of in-game strate-
gies, and post-CTF reflections. The analysis below is
based on 22 responses we received to the survey.

When asked to rate confidence in their computer se-
curity skills before and after the competition, we found
an improvement of (on average) 1.4 points on a 10-point
scale. Two respondents reported a decrease in perceived

computer security skill, but their comments indicate that
they may have been over-confident in their skill level
before the competition began.

When polled about interest in a computer security ca-
reer both before and after the event, respondents displayed
an average of 1.1 point increase in interest (again, on a
10-point scale). This is likely due to the fact that many
of those who responded stated that they had a 10 out of
10 interest in a computer security career even before the
competition.

When asked to select the lectures that they found to be
most helpful, the Linux Server Lockdown was the most
popular (13 votes), closely followed by Web Application
Exploitation (11 votes). Survey comments indicated that
respondents found several techniques presented during
our lectures useful. From the Linux Server Lockdown lec-
ture, Apache’s mod_security was mentioned as being
helpful by several respondents. Additionally, respondents
used fail2ban and Tripwire for detecting attacks, al-
beit some mentioned that Tripwire consumed too many
system resources and had to be turned off. Surveys also
indicated that knowledge of PHP’s SQL escaping func-
tions (described in Web Application Exploitation lecture)
was useful in patching vulnerabilities in plug-ins. Respon-
dents also reported using input “white-listing” technique
taught in class to prevent command injection.

Of course, several knowledge areas that were not ad-
dressed in lecture proved very useful as well. Several
respondents reported that being unfamiliar with PHP de-
velopment posed a significant limitation — these teams
were ill-prepared for auditing the plug-in source code to
discover vulnerabilities via code inspection, which was
useful both for patching and for exploit development.
Aside from PHP development experience, some respon-
dents indicated that remote system logging tools, specif-

ically syslog-ng, proved useful for quickly detecting
system attacks, and also in analyzing and re-purposing
competitors’ exploits. Finally, social engineering skills
(an aspect not covered in lecture) helped one team obtain
root access on several other teams’ VMs. This “exploit”
used an ingenious combination of a Gmail account resem-
bling one used by the organizers, a signature block copied
from previous announcements to the list of CTF partic-
ipants, and a replica of the official CTF wiki complete
with a not-so-authentic SSH public key to be used in the
authorized_keys file of the root user on team VMs.

All survey respondents indicated that they spent at least
an hour preparing for the competition. The two most
common preparation time ranges were 1-2 hours (9 re-
spondents) and 4-8 hours (8 respondents). When asked
about time allocation between offense and defense during
the competition itself, 50% of respondents reported that
they spent more time on defense, 36% claim to have spent
the majority of their time on offense, and the remain-
der indicated neither offense nor defense occupied the
majority of their competition time. 86% of respondents
indicated that they attempted to patch at least one of the
vulnerable plug-ins, while those who developed exploits
created an average of 1.5 exploits during the competition.
Overall, 91% of those who responded said they would
like to participate in an event like this again.

7 RELATED WORK

Many other cyber security exercises, both with academic
and recreational motives, have shaped the current CTF
landscape. Perhaps the most notable is the annual DefCon
CTF exercise held in Las Vegas, Nevada. This competi-
tion is open to participants world-wide, but has a prelimi-
nary challenge-based qualification round in which partici-
pants solve computer security puzzles on a Jeopardy-like
board. The top eight teams from the qualifiers have histor-
ically played in a team versus team security competition
during the DefCon conference, an experience described
in detail in [5].

Notable academic CTFs include University of Califor-
nia, Santa Barbara’s iCTF, the National Security Agency’s
Cyber Defense Exercise (CDX), and the Collegiate Cyber
Defense Competition (CCDC). From 2003-2007, iCTF
had a team versus team format similar to the MIT/LL
competition. Since then, they have moved towards a sto-
ryline oriented model which provides each team with
identical parallel versions of the game [4]. CDX places
the emphasis on the defensive aspect of security, em-
ploying a Red Cell of hackers from various government
organizations to simulate a live, defensive operation for
the participants [13]. The organizations that compete in
this game often hold semester-long courses to prepare
for the exercise. Similar to CDX, CCDC also places the
emphasis on the defensive aspect of security, employing

an external third-party red team charged with attacking
all participating teams.

Many other challenge or puzzle-oriented security exer-
cises exist as well. One popular and notable example is
NYU Polytechnic Institute’s Cyber Security Awareness
Week (CSAW) competition, which is loosely based on the
DefCon CTF qualifier competition, but also includes a
hardware security challenge and a game segment targeted
at high school students. In addition to the many compe-
titions held at the inter-collegiate and semi-professional
levels, many other exercises have been held at universi-
ties [9, 12]. These events tend to vary in focus between
defensive and offensive, and are often the capstone event
of a semester-long course.

MIT/LL CTF is similar in some aspects to the afore-
mentioned academic CTFs; however, our main goal was
to make the CTF experience available to students of differ-
ent academic backgrounds and varying practical expertise
in computer security. By giving students an opportunity
to experience what it is like to defend and attack computer
systems first-hand as part of this competition, we were
aiming to encourage interest in practical computer secu-
rity and promote further study outside the competition.
By providing a short series of lectures and labs before
the event instead of requiring completion of a semester-
long course we lowered the barrier to entry and enabled a
wider group of students to participate in this event. The
competition was not structured to protect teams with little
computer security expertise (in fact, several survey re-
spondents found the competition quite difficult and gained
new respect for the skills required to succeed); however,
we believe that it was accessible to the students who at-
tended our lectures and prepared in the weeks preceding
the competition.

Several self-paced security courses, including Google’s
Gruyere [7] and Stanford’s Webseclab [3], also help stu-
dents learn about web application security. However,
we believe that a CTF based around defending an entire
server in real time while running possibly buggy plug-ins
allows students to learn about a broader range of computer
security topics, as well as about operational considera-
tions involved in maintaining a secure system.

8 LESSONS LEARNED

Running the MIT/LL CTF was a new experience for all
team members involved. Aside from learning quite a bit
about the mechanics of web application exploitation while
constructing our WordPress plug-ins (and wondering how
the world of web applications can ever be secured), we
also learned a few lessons about running a competition of
this scale and complexity that are worth sharing.

8.1 Marketing and Scheduling

Running a CTF that includes participants from multiple
universities required paying a lot of attention to schedul-
ing and marketing. Originally, we planned on a week of
day-time preparatory classes, followed by a week of com-
petition during MIT’s month-long break in January 2011.
Despite extensive postering and e-mailing, we received
very little interest, which was likely due to two causes:
student were too busy to spend two weeks on this activity,
and several other January classes and competitions (with
significantly larger prizes) targeted students interested in
web applications and security.

Feedback from MIT’s SIPB and BU’s BUILDS student
groups helped us choose a better schedule by shifting
classes to evenings and limiting the competition to one
weekend. The new format was quite successful by lim-
iting the time commitment required for a busy student.
Advertising the CTF at multiple Boston-area universi-
ties also greatly increased participation — even though
we required physical presence, students from Wellesley
and Olin College braved the drive and came to compete
anyway.

8.2 Infrastructure and Data Collection

We built our CTF infrastructure on VMWare’s ESX so-
lution, which afforded us quite a bit of scalability and
robustness from the beginning. While we were careful
in designing and testing our grading bots, the scoreboard
and other “in-game” infrastructure servers, we still had
a number of issues to fix during the competition itself.
Some of the participants suggested that we hold scrim-
mages before the actual CTF to work out the kinks in the
infrastructure, and that seems like a very good sugges-
tion. Despite extensive testing using failure modes that
we could easily predict (e.g., Apache is down, machine is
firewalled, MySQL is not running), we ended up having
to contend with unexpected scenarios. For example, our
flag rotator bot relied on using rm command to remove
previously-placed flags in the file system. In desperate
attempts to stem damage from attacks, some teams de-
cided to delete /bin/rm from their systems, resulting in
completely unexpected grading bot failures.

A competition like a CTF is a great opportunity to
collect data that might elucidate the ways an adversary ac-
tually attacks the web application, and what actions both
attackers and defenders take throughout the competition.
Our ESX server was setup to capture all network traffic
that traversed the virtual switch; regretfully, something
went wrong overnight, and the file system appeared to
have corrupted our packet capture file. In retrospect, we
would have liked better visibility into participants’ servers,
some of which might have been obtained using the ESX
console or some custom software using VMWare tools
API. For example, volume-based denial of service attacks

were forbidden by our CTF rules, and we were asked
several times by participants to mediate a situation where
excessive network or CPU bandwidth was being utilized.
Our methods used to verify validity of such claims were
rather rudimentary — we could attempt to connect to the
server in question, or traceroute the purported source of
the denial-of-service attack; with some preparation, we
may have had better tools at our disposal.

8.3 Operational Issues and Game Mechanics

When designing and implementing our grading bots, we
were concerned about encouraging undesirable behaviors
—e.g. if the grading bot is easy to identify, a participant
might open the firewall only for the grading bot and ex-
clude all other teams from accessing their server. Due to
time restrictions in developing the grader bots, we used
a different mechanism to interact with WordPress (via
XMLRPC, used by desktop-based blogging software) in-
stead of through a scripted browser. In retrospect, this was
suboptimal, as certain activities performed by the grader
were clearly distinguishable; furthermore, some aspects
of the plug-ins ran JavaScript on the client and thus were
not exercised by the grader. To make grading slightly less
predictable, we did the following:

e Randomized starting time for a grading run (within
a 10-minute interval),

e Randomly picked content drawn from
100 papers generated by MIT’s Au-
tomated Paper Generator available at

http://pdos.csail.mit.edu/scigen/,

e Randomly picked a string for the ‘User-Agent’
header from a large set obtained from
http://www.useragentstring.com.

In order to make the competition more accessible to
weaker teams (and to obviate the necessity for teams to
create their own whole-system backups), we offered each
team three snapshots and three reverts per day of the
competition. Because we couldn’t give each team access
to the ESX console, we performed these operations our-
selves when requested by a team member. This “lifeline”
enabled teams whose server was completely destroyed
to continue participating in the game; however, the me-
chanics could be improved. We required a team member
to approach us in person and bring a token given at the
start of the CTF to identify their team in order to request
a snapshot or a revert. Since all participants were in the
same room, it was obvious that a certain team’s VM will
be momentarily reverted — in fact, requesting a restore
became quickly known as the “walk of shame”. Unfor-
tunately, many teams created snapshots once their VMs
were already infiltrated; thus, the attackers were able to
compromise the machine again before countermeasures
could be taken by the defenders. In addition, the initial

snapshot provided to the teams had all plug-ins installed
and Apache running, which again created a vulnerable
situation and prevented the lifeline from being useful (es-
pecially during the second day of the competition).

8.4 Measuring the CTF’s Educational Impact

To measure the effect of the CTF competition on partici-
pants’ knowledge of computer security, we conducted an
Internet survey after the event. The survey was rather ad
hoc, as our primary motivation was to interest students
in the field of computer security, to make the CTF expe-
rience available to those with little practical experience
in the area, and to run an exciting competition. In these
goals, the survey results indicate that we were success-
ful. In future iterations of the MIT/LL CTF, we plan to
measure the effect CTF had on participants’ knowledge
more directly by following methods similar to [10], by in-
cluding pre-CTF and post-CTF quizzes to assess players’
prior knowledge of computer security areas and experi-
ence gained by participating in the CTF. Since this is a
completely voluntary game, we will likely need to incen-
tivize participation in these quizzes to ensure statistically
significant results; perhaps a raffle for a small prize would
work well.

9 CONCLUSION

The MIT/LL CTF competition was a great learning ex-
perience both for the students involved and for the orga-
nizers. We believe that this exercise helped the students
understand the intricacies of practical computer security,
highlighted their strengths and weaknesses in computer
security skills and generally increased their interest and
desire to learn more about this area. We plan to continue
fostering this community by encouraging creation of read-
ing groups focused on practical computer security and by
running similar CTF competitions in the upcoming years,
incorporating the feedback from this year’s participants.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and our
shepherd, Sean Peisert, for providing feedback that helped
improve this paper. We would also like to thank Lincoln
CTO, Bernadette Johnson, for her guidance and encour-
agement. Additionally, we thank Geoffrey Thomas of
MIT SIPB for his presentation on securing Linux servers.

REFERENCES

[1] WordPress: Blog tool and publishing platform.
http://www.wordpress.org.

[2] S. Bratus. What hackers learn that the rest of us
don’t: Notes on hacker curriculum. IEEE Security
and Privacy, 5(4):72-75, 2007.

[3] E. Bursztein, B. Gourdin, C. Fabry, J. Bau, G. Rydst-
edt, H. Bojinov, D. Boneh, and J. C. Mitchell. Web-
seclab security education workbench. In Proc. of the
3rd Workshop on Cyber Security Experimentation
and Test, Washington, DC, August 2010.

[4] N. Childers, B. Boe, L. Cavallaro, L. Cavedon,
M. Cova, M. Egele, and G. Vigna. Organizing large
scale hacking competitions. In Proc. of the 7th
Conference on Detection of Intrusions and Malware
& Vulnerability Assessment, Bonn, Germany, July
2010.

[5] C. Cowan, S. Arnold, S. Beattie, and C. Wright. De-
fcon capture the flag: Defending vulnerable code
from intense attack. In Proc. of the DARPA Informa-

tion Survivability Conference and Exposition, Wash-
ington, DC, April 2003.

[6] R. L. Fanelli and T. J. O’Connor. Experiences with
practice-focused undergraduate security education.
In Proc. of the 3rd Workshop on Cyber Security
Experimentation and Test, Washington, DC, August
2010.

[7] Google, Inc. Web application exploits and defenses.
http://google-gruyere.appspot.com/.

[8] M. E. Locasto. Helping students Own their own
code. IEEE Security and Privacy, 7(3):53-56, 2009.

[9] G. Louthan, W. Roberts, M. Butler, and J. Hale. The
Blunderdome: An offensive exercise for building
network, systems, and web security awareness. In
Proc. of the 3rd Workshop on Cyber Security Ex-
perimentation and Test, Washington, DC, August
2010.

[10] M. Mink and R. Greifeneder. Evaluation of the of-
fensive approach in information security education.
IFIP Advances in Information and Communication
Technology, 330:203-214, 2010.

[11] T. J. O’Connor, B. Sangster, and E. Dean. Using
hacking to teach computer science fundamentals.
In American Society for Engineering Education, St.
Lawrence Section, 2010.

[12] M. O’Leary. A laboratory based capstone course in
computer security for undergraduates. In Proc. of the
37th SIGCSE Technical Symposium on Computer
Science Education, Houston, TX, March 2006.

[13] United States National Security Agency. Fact sheet:
NSA/CSS cyber defense exercise - after exercise.
http://www.nsa.gov/public_info/_files/
press_releases/cdx_fact_sheet.pdf.

